Skip to main content
Log in

Exact Large Deviation Functional of a Stationary Open Driven Diffusive System: The Asymmetric Exclusion Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the asymmetric exclusion process (ASEP) in one dimension on sites i=1,...,N, in contact at sites i=1 and i=N with infinite particle reservoirs at densities ρ a and ρ b . As ρ a and ρ b are varied, the typical macroscopic steady state density profile ¯ρ(x), x∈[a,b], obtained in the limit N=L(ba)→∞, exhibits shocks and phase transitions. Here we derive an exact asymptotic expression for the probability of observing an arbitrary macroscopic profile \(\rho (x):{\text{ }}P_N (\{ \rho (x)\} ) \sim \exp [ - L\mathcal{F}_{[a,b]} (\{ \rho (x)\} ;\rho _a ,\rho _b )]\), so that \(\mathcal{F}\) is the large deviation functional, a quantity similar to the free energy of equilibrium systems. We find, as in the symmetric, purely diffusive case q=1 (treated in an earlier work), that \(\mathcal{F}\) is in general a non-local functional of ρ(x). Unlike the symmetric case, however, the asymmetric case exhibits ranges of the parameters for which \(\mathcal{F}(\{ \rho (x)\} )\) is not convex and others for which \(\mathcal{F}(\{ \rho (x)\} )\) has discontinuities in its second derivatives at ρ(x)=¯ρ(x). In the latter ranges the fluctuations of order \(1/\sqrt N \) in the density profile near ¯ρ(x) are then non-Gaussian and cannot be calculated from the large deviation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  2. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  3. R. Graham, Onset of cooperative behavior in nonequilibrium steady states, in Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, G. Nicolis, G. Dewel, and J. W. Turner, eds. (Wiley, New York, 1981).

    Google Scholar 

  4. H. Spohn, Long range correlations for stochastic lattice gases in a non-equilibrium steady state, J. Phys A. 16:4275–4291 (1983).

    Google Scholar 

  5. R. Schmitz, Fluctuations in nonequilibrium fluids, Phys. Reports 171:1–58 (1988), and references therein.

    Google Scholar 

  6. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65:851–1112 (1993).

    Google Scholar 

  7. J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Generic long-range correlations in molecular fluids, Annu. Rev. Phys. Chem. 45:213–239 (1994).

    Google Scholar 

  8. W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Concentration fluctuations in a polymer solution under a temperature gradient, Phys. Rev. Lett. 81:5580–5583 (1998).

    Google Scholar 

  9. S. Sasa and H. Tasaki, cond-mat/0108365 and references therein.

  10. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  11. B. Schmittman and R. K. P. Zia, Statistical Mechanics of Driven Diffusive Systems (Academic Press, London, 1995).

    Google Scholar 

  12. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26:1493–1517 (1993).

    Google Scholar 

  13. S. Olla, Large deviations for Gibbs random fields, Probab. Th. Rel. Fields 77:343–357 (1988).

    Google Scholar 

  14. R. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985).

    Google Scholar 

  15. B. Derrida, J. L. Lebowitz, and E. R. Speer, Large deviation of the density profile in the symmetric simple exclusion process, J. Stat. Phys. 107:599–634 (2002).

    Google Scholar 

  16. B. Derrida, J. L. Lebowitz, and E. R. Speer, Free energy functional for nonequilibrium systems: an exactly solvable case, Phys. Rev. Lett. 87:150601(2001).

    Google Scholar 

  17. S. Sandow, Partial asymmetric exclusion process with open boundaries, Phys. Rev. E 50:2660–2667 (1994).

    Google Scholar 

  18. T. Sasamoto, One dimensional partially asymmetric simple exclusion process with open boundaries: Orthogonal polynomials approach, J. Phys. A 32:7109–7131 (1999).

    Google Scholar 

  19. R. A. Blythe, M. R. Evans, F. Colaiori, and F. H. L. Essler, Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra, J. Phys. A 33:2313–2332 (2000).

    Google Scholar 

  20. J. Krug, Boundary-induced phase transitions in driven diffusive systems, Phys. Rev. Lett. 67:1882–1885 (1991).

    Google Scholar 

  21. G. Schütz and E. Domany, Phase transitions in an exactly soluble one-dimensional exclusion process, J. Stat. Phys. 72:277–296 (1993).

    Google Scholar 

  22. T. M. Liggett, Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes (Springer-Verlag, New York, 1999).

    Google Scholar 

  23. L. Santen and C. Appert, The asymmetric exclusion process revisited: fluctuations and dynamics in the domain wall picture, J. Stat. Phys. 106:187–199 (2002).

    Google Scholar 

  24. M. Bramson, Front propagation in certain one-dimensional exclusion models, J. Stat. Phys. 51:863–869 (1988).

    Google Scholar 

  25. V. Popkov and G. M. Schütz, Steady state selection in driven diffusive systems with open boundaries, Europhys. Lett. 48:257–263 (1999).

    Google Scholar 

  26. J. S. Hager, J. Krug, V. Popkov, and G. M. Schütz, Minimal current phase and universal boundary layers in driven diffusive systems, Phys. Rev. E 63:0561001–12 (2001).

    Google Scholar 

  27. B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69:667–687 (1992).

    Google Scholar 

  28. B. Derrida and M. R. Evans, Exact correlation functions in an asymmetric exclusion model with open boundaries, J. Phys. I France 3:311–322 (1993).

    Google Scholar 

  29. F. H. L. Essler and V. Rittenberg, Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries, J. Phys. A 29:3375–3408 (1996).

    Google Scholar 

  30. K. Mallick and S. Sandow, Finite dimensional representations of the quadratic algebra: applications to the exclusion process, J. Phys. A 30:4513–4526 (1997).

    Google Scholar 

  31. B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact free energy functional for a driven diffusive open stationary nonequilibrium system, Phys. Rev. Lett. 89:030601(2002).

    Google Scholar 

  32. B. Derrida, M. R. Evans, and D. Mukamel, Exact diffusion constant for one-dimensional asymmetric exclusion models, J. Phys. A 26:4911–4918 (1993).

    Google Scholar 

  33. K. Mallick, Shocks in the asymmetry exclusion model with an impurity, J. Phys. A 29:5375–5386 (1996).

    Google Scholar 

  34. C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviations for simple exclusion processes, Commun. Pure Appl. Math. 42:115–137 (1989).

    Google Scholar 

  35. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Fluctuations in stationary non equilibrium states of irreversible processes, Phys. Rev. Lett. 87:040601(2001).

    Google Scholar 

  36. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic fluctuation theory for stationary non equilibrium states, J. Stat. Phys. 107:635–675 (2002).

    Google Scholar 

  37. L. Jensen, Large deviations of the asymmetric simple exclusion process in one dimension, Dissertation (New York University, 2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Lebowitz, J.L. & Speer, E.R. Exact Large Deviation Functional of a Stationary Open Driven Diffusive System: The Asymmetric Exclusion Process. Journal of Statistical Physics 110, 775–810 (2003). https://doi.org/10.1023/A:1022111919402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022111919402

Navigation