Skip to main content
Log in

Limit Theorems for Logarithmic Averages of Fractional Brownian Motions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We prove almost sure invariance principles for logarithmic averages of fractional Brownian motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Berkes, I., and Horváth, L. (1996). Between local and global logarithmic averages. Stat. Prob. Lett. 30, 369–378.

    Google Scholar 

  2. Berkes, I., and Horváth, L. (1997). Limit theorems for logarithmic averages of random vectors. Math. Nachr. (to appear).

  3. Brosamler, G. (1988). An almost everywhere central limit theorem. Math. Proc. Cambridge Phil. Soc. 104, 561–574.

    Google Scholar 

  4. Bryc, W. (1995). The Normal Distribution, Springer-Verlag, New York.

    Google Scholar 

  5. Csáki, E., Földes, A., and Révész, P. (1993). On almost sure local and global central limit theorems. Prob. Th. Rel. Fields 97, 321–337.

    Google Scholar 

  6. Csáki, E., and Salminen, P. (1996). On additive functionals of diffusion processes. Studia Sci. Math. Hung. 31, 47–62.

    Google Scholar 

  7. Csörgő, M., and Horváth, L. (1992). Invariance principles for logarithmic averages. Math. Proc. Cambridge Phil. Soc. 112, 195–205.

    Google Scholar 

  8. Csörgő, M., and Révész, P. (1981). Strong Approximations in Probability and Statistics, Academic Press, New York.

    Google Scholar 

  9. Feller, W. (1966). An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley, New York.

    Google Scholar 

  10. Fisher, A., (1989). A pathwise central limit theorem for random walks. Preprint.

  11. Horváth, L., and Khoshnevisan, D. (1996). A strong approximation for logarithmic averages. Studia Sci. Math. Hung. 31, 187–196.

    Google Scholar 

  12. Gradshteyn, I. S., and Ryzhik, I. M. (1994). Table of Integrals, Series and Products, Fifth Edition, Academic Press, San Diego.

    Google Scholar 

  13. Ibragimov, I. A. (1965). On a strong mixing condition for stationary Gaussian processes. Soviet Math. Dokl. 161, 356–359.

    Google Scholar 

  14. Kolmogorov, A. N., and Rozanov, Y. A. (1960). On strong mixing conditions for stationary Gaussian processes. Th. Prob. Appl. 5, 204–208.

    Google Scholar 

  15. Lacey, M., and Philipp, W. (1990). A note on the almost everywhere central limit theorem. Stat. Prob. Lett. 9, 201–205.

    Google Scholar 

  16. Maruyama, G. (1970). Infinitely divisible processes. The. Prob. Appl. 15, 1–22.

    Google Scholar 

  17. Samorodnitsky, G., and Taqqu, M. (1994). Stable Non-Gaussian Random Processes, Chapman and Hall, New York.

    Google Scholar 

  18. Schatte, P. (1988). On strong versions of the central limit theorem. Math. Nachr. 137, 249–256.

    Google Scholar 

  19. Shao, Q, and Lu, C. (1987). Strong approximations for partial sums of weakly dependent random variables. Scientia Sinica (Ser. A) 30, 575–587.

    Google Scholar 

  20. Takashima, K. (1989). Sample path properties of ergodic self-similar processes. Osaka J. Math. 26, 159–189.

    Google Scholar 

  21. Weigl, A. (1989). Zwei Sätze über die Belegungszeit beim Random Walk, Diplomarbeit. Technical University, Vienna.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by

Research supported by

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkes, I., Horváth, L. Limit Theorems for Logarithmic Averages of Fractional Brownian Motions. Journal of Theoretical Probability 12, 985–1009 (1999). https://doi.org/10.1023/A:1021641020103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021641020103

Navigation