Skip to main content
Log in

The Law of the Iterated Logarithm for Functionals of Harris Recurrent Markov Chains: Self Normalization

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let {X n } n≥0 be a Harris recurrent Markov chain with state space E, transition probability P(x, A) and invariant measure π, and let f be a real measurable function on E. We prove that with probability one,

$$\mathop {\lim \sup }\limits_{n \to \infty } \sum\limits_{k = 1}^n {f(X_k )/\sqrt {2\left( {\sum\limits_{k = 1}^n {f^2 (X_k )} } \right)\log \log \left( {\sum\limits_{k = 1}^n {f^2 (X_k )} } \right)} } $$
$$ = \left( {1 + \left( {\int {f^2 (x)\pi (dx)} } \right)^{ - 1} \int {\sum\limits_{k = 1}^\infty {f(x)P^k f(x)\pi (dx)} } } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} $$

under some best possible conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. de Acosta, A. (1988). Large deviations for vector-valued functional of a Markov chain: Lower bounds. Ann. Prob. 16, 925–960.

    Google Scholar 

  2. de Acosta, A., and Chen, X. (1998). Moderate deviations for empirical measures of Markov chains: Upper bounds. J. Theor. Prob. 11, 1075–1110.

    Google Scholar 

  3. Athreya, K. B., and Ney, P. (1978). A new aproach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245, 493–501.

    Google Scholar 

  4. Chen, X. (1999). Limit theorems for functionals of ergodic Markov chains in general state space. Memoirs of the AMS, Vol. 139,No. 664.

  5. Chen, X. Some dichotomy results for functionals of Harris recurrent Markov chains. Stochastic Proc. Appl. (to appear).

  6. Chow, Y. S., and Teicher, H. (1988). Probability Theory, Independence, Interchangeability, Martingales, Springer-Verlag, New York.

    Google Scholar 

  7. Caáki, E., Csörgö, M., Földes, A., and Révész, P. (1992). Strong approximation of additive functionals. J. Theor. Prob. 5, 679–706.

    Google Scholar 

  8. Csörgö, M., Lin, Z. Y., and Shao, Q. M. (1992). Studentized increments of partial sums. Technical Report Ser. Lab. Res. Statist. Probab. No. 192, Carleton University, University of Ottawa, Ottawa, Ontario, Canada.

    Google Scholar 

  9. Csörgö, M., and Révész, P. (1985). On the stability of the local time of a symmetric random walk. Acta Sci. Math. 48, 85–96.

    Google Scholar 

  10. Csörgö, M., and Shao, Q. M. (1994). A self-normalized Erdös-Rényi type strong law of large numbers. Stoch. Proc. Appl. 50, 187–196.

    Google Scholar 

  11. Csáki, E., and Csörgö, M. (1995). On additive functionals of Markov chains. J. Theor. Prob. 8, 905–919.

    Google Scholar 

  12. Duflo, M. (1997). Random Iterative Models, Springer, New York.

    Google Scholar 

  13. Giné, E., and Mason, D. M. (1998). On the LIL for self-normalized sums of i.i.d. random variables. J. Theor. Prob. 11, 351–370.

    Google Scholar 

  14. Griffin, P., and Kuelbs, J. (1989). Self-normalized law of the iterated logarithm. Ann. Prob. 17, 1571–1601.

    Google Scholar 

  15. Griffin, P., and Kuelbs, J. (1991). Some extensions of the LIL via self-normalizations. Ann. Prob. 19, 380–395.

    Google Scholar 

  16. Hall, P., and Heyde, C. C. (1980). Martingale Limit Theorems and Its Application, Academic Press, New York.

    Google Scholar 

  17. Ledoux, M., and Talagrand, M. (1991). Probability in Banach Spaces, Springer, Berlin.

    Google Scholar 

  18. Marcinkiewicz, J., and Zyguund (1937). Remarque sur la loi du logarithme itéré. Fund. Math. 29, 215–222.

    Google Scholar 

  19. Meyn, S. P., and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability, Springer-Verlag, London.

    Google Scholar 

  20. Nummelin, E. (1978). A splitting technique for Harris recurrent chains. Z. Wahrsch. verw. Gebiete 43, 309–318.

    Google Scholar 

  21. Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators, Cambridge University Press, Cambridge, England.

    Google Scholar 

  22. Orey, S. (1971). Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand Reinhold, London.

    Google Scholar 

  23. Révész, P. (1990). Random Walk in Random and Non-Random Environments, World Scientific, London.

    Google Scholar 

  24. Revuz, D. (1975). Markov Chains. North-Holland, New York.

    Google Scholar 

  25. Shao, Q. M. (1997). Self-normalized large deviations. Ann. Prob. 25, 285–328.

    Google Scholar 

  26. Spitzer, F. (1964). Principles of Random Walk, Van Nostrand, Princeton, New Jersey.

    Google Scholar 

  27. Touati, A. (1990). Loi functionelle du logarithme itéré pour les processus de Markov récurrents. Ann. Prob. 18, 140–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X. The Law of the Iterated Logarithm for Functionals of Harris Recurrent Markov Chains: Self Normalization. Journal of Theoretical Probability 12, 421–445 (1999). https://doi.org/10.1023/A:1021630228280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021630228280

Navigation