Skip to main content
Log in

Molecularly imprinted polymeric membranes

  • Published:
Bioseparation

Abstract

Molecularly imprinted polymeric membranes have been emerged since 1990. Among various kinds of molecular imprinting studies, the application of molecular imprinting to membrane separation is still a novel investigation. In the present review paper, molecularly imprinted polymeric membranes are summarized and examined. The application of molecular imprinting to membrane separation shortly leads to high performance separation membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arshady R & Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Makromol. Chem. 182: 687-692.

    Google Scholar 

  • Bender ML & Komiyama M (1978) Cyclodextrin Chemistry. Springer, New York. Cram DJ (1988) The design of molecular hosts, guests, and their complexes. Angew. Chem. Int. Ed. Engl. 27: 1009-1020.

    Google Scholar 

  • Diederich F (1988) Complexation of neutral molecules by cyclophane hosts. Angew. Chem. Int. Ed. Engl. 27: 362-386.

    Google Scholar 

  • Hong J-M, Anderson PE, Qian J & Martin R (1998) Selectivelypermeable ultrathin film composite membranes based on molecularly-imprinted polymers. Chem. Mater. 10: 1029-1033.

    Google Scholar 

  • Ikeda A & Shinkai S (1997) Novel cavity using calix[n]arene skeltones: Toward molecular recognition and metal binding.

  • Kobayashi T, Wang HY & Fujii N (1995) Molecular imprinting of theophylline in acrylonitrile-acrylic acid copolymer membrane. Chem. Lett. 927-928.

  • Kobayashi T, Wang HY & Fujii N (1998) Molecular imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments. Anal. Chim. Acta 365: 81-88.

    Google Scholar 

  • Kondo Y & Yoshikawa M (2001) Effect of solvent composition on chiral recognition ability of molecularly imprinted DIDE derivatives. Analyst 126: 781-783.

    PubMed  Google Scholar 

  • Kondo Y, Yoshikawa, M & Okushita H (2000) Molecularly imprinted polyamide membranes for chiral recognition. Polym. Bull. 44: 517-524.

    Google Scholar 

  • Lehn JM (1988) Supramolecular chemistry-Scope and perspectives Molecules, supermolecules, and molecular devices. Angew. Chem. Int. Ed. Engl. 27: 89-112.

    Google Scholar 

  • Marx-Tibbon A & Willner I (1994) Photostimulated imprinted polymers: a light-regulated medium for transport of amino acids. J. Chem. Soc., Chem. Commun. 1261-1262.

  • Mathew-Klotz J & Shea J (1996) Imprinted polymer membranes for the selective transport of targeted neutral molecules. J. Am. Chem. Soc. 118: 8154-8155.

    Google Scholar 

  • Mosbach K & Ramström O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Bio/Technology 14: 163-170.

    Google Scholar 

  • Mulder M (1996) Basic Principles of Membrane Technology. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Nowick JS, Chen JS & Noronha G (1993) Molecular recognition in micelles: The roles of hydrogen bonding and hydrophobicity in adenine-thymine base-pairing in SDS micelles. J. Am. Chem. Soc. 115: 7636-7644.

    Google Scholar 

  • Ohya Y, Miyaoka J & Ouchi T (1996) Recruitment of enzyme activity in albumin by molecular imprinting. Macromol. Rapid Commun. 17: 871-874.

    Google Scholar 

  • Pedersen CJ (1988) The discovery of crown ethers. Angew. Chem. Int. Ed. Engl. 27: 1021-1027.

    Google Scholar 

  • Piletsky SA, Dubei IY, Fedroyak DM & Kukhar VP (1990) Substrate-selective polymeric membranes. Selective transfer of nucleic acid components. Biopolym. Kletka 6: 55-58.

    Google Scholar 

  • Piletsky SA, Panasyuk TL, Piletskaya EV, Nicholls IA & Ulbricht M(1999) Receptor and transport properties of imprinted polymer membranes-a review. J. Membr. Sci. 157: 263-278.

    Google Scholar 

  • Piletsky SA, Matuschewski H, Schedler U, Wilpert A, Piletska EV, Thiele TA & Ulbricht M (2000) Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules 33: 3092-3098.

    Google Scholar 

  • Rebek J Jr. (1990a) Molecular recognition with model systems. Angew. Chem. Int. Ed. Engl. 29: 245-255.

    Google Scholar 

  • Rebek J Jr. (1990b) Model Studies inmolecular recognition. Science 235: 1478-1484.

    Google Scholar 

  • Reddy PS, Kobayashi T & Fujii N (1999) Molecular imprinting in hydrogen bonding networks on polyamide nylon for recognition of amino acids. Chem. Lett. 293-294.

  • Sasaki DY, Kurihara K & Kunitake T (1991) Specific, multiplepoint binding of ATP and AMP to a guanidium-functionalized monolayer. J. Am. Chem. Soc. 113: 9685-9686.

    Google Scholar 

  • Sellergren B (1997) Imprinted polymers: stable, reusable antibodymimics for highly selective separations. Am. Lab. 14: 163-167.

    Google Scholar 

  • Sellergren B & Andersson L (1990) Molecular recognition in macroporous polymers prepared by a substrate analogue imprinting strategy. J. Org. Chem. 55: 3381-3383.

    Google Scholar 

  • Shea KJ & Dougherty TK (1986) Molecular recognition on synthetic amorphous surfaces. The influence of functional group positioning on the effectiveness of molecular recognition. J. Am. Chem. Soc. 108: 1091-1093.

    Google Scholar 

  • Shimidzu T & Yoshikawa M (1983a) Photo-induced carrier mediated transport of alkali metal salts. J. Membr. Sci. 13: 1-13

    Google Scholar 

  • Shimidzu T & Yoshikawa M (1983b) Photocontrols of alkali metal salt permeation with 1-octadecyl-3,3-dimethyl-6_-nitrospiro(indoline-2,2_-2H-benzopyran)-blended membrane. Polym. J. 15: 631-634.

    Google Scholar 

  • Stahl M, Mansson M-T & Mosbach K (1990) The synthesis of a D-amino acid ester in an organic media with α-chymotrypsin modified by a bio-imprinting procedure. Biotechnol. Lett. 12: 161-166.

    Google Scholar 

  • Tone S, Masawaki T & Eguchi K (1996) The optical resolution of amino acids by plasma polymerized terpene membranes. J. Membr. Sci. 118: 31-40.

    Google Scholar 

  • Wang HY, Kobayashi T & Fujii N. (1996) Molecular imprint membranes prepared by the phase inversion precipitation technique. Langmuir 12: 4850-4856.

    Google Scholar 

  • Wang HY, Kobayashi T & Fujii N (1997a) Surface molecular imprinting on photosensitive dithiocarbamoyl polyacrylonitrile membranes using photograft polymerization. J. Chem. Tech. Biotecnol. 70: 355-362.

    Google Scholar 

  • Wang HY, Kobayashi T, Fukuya T & Fujii N (1997b) Molecular imprint membranes prepared by the phase inversion precipitation technique. 2. Influence of coagulation temperature in the phase inversion process on the encoding in polymeric membranes. Langmuir 13: 5396-5400.

    Google Scholar 

  • Wulff G (1982) Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites. Pure Appl. Chem. 54: 2093-2102.

    Google Scholar 

  • Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 34: 1812-1832.

    Google Scholar 

  • Wulff G & Sarhan A (1972) The use of polymers with enzymeanalogous structures for the resolution of racemates. Angew. Chem. Int. Ed. Engl. 11: 341 (Angew. Chem. 84: 364).

    Google Scholar 

  • Wulff G, Sarhan A & Zabrocki K (1973) Enzyme-analogue polymers and their use for the resolution of racemates. Tetrahedron Lett. 44: 4329-4332.

    Google Scholar 

  • Wulff G, Poll H-G & Minarik M (1986) Enzyme-analogue built polymers. XIX Racemic resolution on polymers containing chiral cavities. J. Liq. Chromatogr. 9: 385-405.

    Google Scholar 

  • Yoshikawa M, Ogata N & Shimidzu T (1986) Polymer membrane as a reaction field. III. Effect of membrane polarity on selective separation of a water-ethanol mixture through synthetic polymer membranes. J. Membr. Sci. 26: 107-113.

    Google Scholar 

  • Yoshikawa M, Izumi J, Kitao T, Koya S & Sakamoto S (1994) Membranes for enantioselective separation: synthesis and characterization. Preprints for the 16th Annual Meeting of the Membrane Society of Japan: A1-1-1.

  • Yoshikawa M, Izumi J, Kitao T & Sakamoto S (1996) Molecularly imprinted polymeric membranes containing DIDE derivatives for optical resolution of amino acids. Macromolecules 29: 8197-8203.

    Google Scholar 

  • Yoshikawa M, Izumi J & Kitao T (1997a) Enantioselecyive electrodialysis of amino acids with charged polar side chains through molecularly imprinted polymeric membranes containing DIDE derivatives. Polym. J. 29: 205-210.

    Google Scholar 

  • Yoshikawa M, Izumi J, Kitao T & Sakamoto S (1997b) Alternative molecularly imprinted polymeric membranes from a tetrapeptide residue consisting of D-or L-amino acids. Macromol. Rapid Commun. 18: 761-767.

    Google Scholar 

  • YoshikawaM(1998a)Molecularly imprinted polymeric membranes for optical resolution. In: Bartsch RA & Maeda M (eds.) Molecular and Ionic Recognition with Imprinted Polymers. ACS Symposium Ser. 703 (pp. 170-187). ACS, Washington, DC.

  • Yoshikawa M, Izumi, J, Ooi T, Kitao T, Guiver MD & Robertson GP (1998b) Carboxylated polysulfone membranes having a chiral recognition site induced by an alternative molecular imprinting technique. Polym. Bull. 40: 517-524.

    Google Scholar 

  • YoshikawaM, Izumi, J & Kitao T (1999a) Alternative molecular imprinting, a facile way to introduce chiral recognition sites. React. Funct. Polym. 42: 93-102.

    Google Scholar 

  • Yoshikawa M, Ooi T & Izumi J (1999b) Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate. J. Appl. Polym. Sci. 72: 493-499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshikawa, M. Molecularly imprinted polymeric membranes. Bioseparation 10, 277–286 (2001). https://doi.org/10.1023/A:1021537602663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021537602663

Navigation