Skip to main content
Log in

MIP-ligand binding assays (pseudo-immunoassays)

  • Published:
Bioseparation

Abstract

Molecular imprint sorbent assays (MIAs) have been applied to an increasing number of analytes of medical and environmental interest: the sensitivities and selectivities of these assays are comparable to immunoassays employing biological antibodies. In a number of cases complete analytical procedures starting from raw samples (blood, plasma and urine) have been demonstrated. There have been significant advances in applying MIPs in new formats and in the use of non-radioisotope labels. Progress in the field is reviewed, with particular emphasis on the technical aspects and new innovations. It is demonstrated that many of the perceived drawbacks of molecular imprinted polymers (MIPs) do not hinder their application in competitive binding assays: Many MIAs have been applied in aqueous systems and a heterogenous distribution of binding sites is not problematic, provided the recognition sites which bind the probe most strongly are selective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson LI (2000) J. Chromatogr. B. 739: 163-173.

    Google Scholar 

  • Andersson LI (2001) Application of molecularly imprinted polymers in competitive ligand binding assays for analysis of biological samples. In: Molecularly Imprinted Polymers: Manmade Mimics of Antibodies and their Applications in Analytical Chemistry, (pp. 341-354). Sellergren B (ed). Elsevier: Amsterdam.

    Google Scholar 

  • Andersson LI et al. (1995) Proc. Nat. Acad. Sci. USA. 92: 4788-4792.

    PubMed  Google Scholar 

  • Andersson LI (1996) Anal. Chem. 68: 111-117.

    Google Scholar 

  • Ansell RJ & Mosbach K (1998) Analyst 123: 1611-1616.

    Google Scholar 

  • Ansell RJ, Ramstrom O & Mosbach K (1996) Clin. Chem. 42: 1506-1512.

    PubMed  Google Scholar 

  • Bengtsson H, Roos U & Andersson LI (1997) Anal. Cmmun. 34: 233-235.

    Google Scholar 

  • Berglund J et al. (1996) Bioorg. Med. Chem. Lett. 6: 2237-2242.

    Google Scholar 

  • Biffis A et al. (2001) Macr. Chem. Phys. 202: 163-171.

    Google Scholar 

  • Bock JL (2000) Am. J. Clin. Pathol. 113: 628-646.

    PubMed  Google Scholar 

  • Catt K, Niall HD & Tregear GW (1967) Nature 213: 825-827.

    PubMed  Google Scholar 

  • Hage DS (1999) Anal. Chem. 71: 294R-304R.

    PubMed  Google Scholar 

  • Haupt K, Dzgoev A & Mosbach K (1998) Anal. Chem. 70: 628-631.

    Google Scholar 

  • Haupt K, Mayes AG & Mosbach K (1998) Anal. Chem. 70: 3936-3939.

    Google Scholar 

  • Haupt K (1999) React. Funct. Polym. 41: 125-131.

    Google Scholar 

  • Iqbal SS et al. (2000) Mater. Sci. Eng. C, 7: 77-81.

    Google Scholar 

  • Kroeger S et al. (1999) Anal. Chem. 71: 3698-3702.

    Google Scholar 

  • Levi R et al. (1997) Anal. Chem. 69: 2017-2021.

    Google Scholar 

  • Mayes AG & Lowe CR (1998) Optimization of molecularly imprinted polymers for radio-ligand binding assays. In: Methodological Surveys in Bioanalysis of Drugs, vol. 25. Drug Development Assay Approaches Including Molecular Imprinting and Biomarkers, (pp. 28-36). Reid ED, Hill HM & Wilson ID (eds.) Royal Society of Chemistry.

  • Mayes AG & Mosbach K (1996) Anal. Chem. 68: 3769-3774.

    Google Scholar 

  • Mayes AG, Andersson LI & Mosbach K (1994) Anal. Biochem. 222: 483-488.

    PubMed  Google Scholar 

  • Muldoon MT & Stanker LH (1995) J. Agric. Food Chem. 43: 1424-1427.

    Google Scholar 

  • Piletsky SA et al. (1997) Anal. Lett. 30: 445-455.

    Google Scholar 

  • Piletsky SA et al. (2000) Anal. Chem. 72: 4381-4385.

    PubMed  Google Scholar 

  • Price CP & Newman DJ (1997) Principles and Practice of Immunoassay. 2 edn. Macmillan Reference Ltd., London.

    Google Scholar 

  • Ramstrom O, Ye L & Mosbach K (1996) Chem. Biol. 3: 471-477.

    PubMed  Google Scholar 

  • Schollhorn B et al. (2000) Analyst 125: 665-667.

    Google Scholar 

  • Sellergren B & Andersson LI (2000) Methods (Companion to Methods in Enzymology) 22: 92-106.

    Google Scholar 

  • Senholdt M et al. (1997) Anal. Lett. 30: 1809-1821.

    Google Scholar 

  • Siemann M, Andersson LI & Mosbach K (1996) J. Agric. Food Chem. 44: 141-145.

    Google Scholar 

  • Surugiu I et al. (1999) Analyst 125: 13-16.

    Google Scholar 

  • Surugiu I et al. (2001) Anal. Chem. 73: 487-491.

    PubMed  Google Scholar 

  • Takeuchi T, Dobashi A & Kimura K (2000) Anal. Chem. 72: 2418-2422.

    PubMed  Google Scholar 

  • Umpleby RJI, Bode M & Shimizu KD (2000) Analyst 125: 1261-1265. ]

    Google Scholar 

  • Vlatakis G et al. (1993) Nature 361: 645-647.

    PubMed  Google Scholar 

  • Ye L, Cormack PAG & Mosbach K (1999) Anal. Commun. 36: 35-38.

    Google Scholar 

  • Ye L, Weiss R & Mosbach K (2000) Macromolecules 33: 8239-8245.

    Google Scholar 

  • Ye L & Mosbach K (2001) J. Am. Chem. Soc. 123: 2901-2902.

    PubMed  Google Scholar 

  • Yilmaz E, Mosbach K & Haupt K (1999) Anal. Commun. 36: 167-170.

    Google Scholar 

  • Yilmaz E, Haupt K & Mosbach K (2000) Angew. Chem. Int. Ed. Eng. 39: 2115-2118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansell, R.J. MIP-ligand binding assays (pseudo-immunoassays). Bioseparation 10, 365–377 (2001). https://doi.org/10.1023/A:1021502122227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021502122227

Navigation