Skip to main content
Log in

Hydrological Impacts of Climate Change on Inflows to Perth, Australia

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The effects of climate change due to increasing atmospheric CO2 onthe major tributaries to the Swan River (Perth, Western Australia) have been investigated. The climate scenarios are based on results from General Circulation Models (GCMs) and 1000 year time series are produced using a stochastic weather generator. The hydrological implications of these scenarios are then examined using a conceptual rainfall-runoff model, CMD-IHACRES, to model the response of six catchments, which combine to represent almost 90% of the total flow entering the upper Swan River,and hence the Perth city urban area. The changes in streamflow varies considerably between catchments, exhibiting a strong dependence on the physical attributes of the catchment in question. The increase in the magnitudes of rare flood events despite significant decreases in mean streamflow levels found in some catchments emphasizes the importance of estimating changes in the nature of the precipitation (variance, length of storm and interstorm periods), along with changes in the mean, in climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACT government: 1994, Urban Stormwater. Edition 1: Standard Engineering Practices, Australian Capital Territory Government, Woden, Australia, ISBN 0644332743.

    Google Scholar 

  • Bates, B. C., Charles, S. P., and Fleming, P. M.: 1993, 'Simulation of Daily Climatic Series for the Assessment of Climate Change Impacts on Water Resources', in Kuo, C. Y. (ed.), Engineering Hydrology. Amer. Soc. Civ. Eng., New York, pp. 67-72.

  • Bates, B. C., Charles, S. P., and Hughes, J. P.: 1998, 'Stochastic Downscaling of Numerical Climate Model Simulations', Environ. Model. Software 13, 325-331.

    Google Scholar 

  • Busby, J. R.: 1988, 'Potential Impacts of Climate Change on Australia's Flora and Fauna', in Pearman, G. I. (ed.), Greenhouse: Planning for Climate Change, E. J. Brill, New York, pp. 387-398.

    Google Scholar 

  • Charles, S. P., Fleming, P. M., and Bates, B. C.: 1993, 'Problems of Simulation of Daily Precipitation and Other Input Time Series for Hydrological Climate Change Models', Hydrology and Water Resources Symposium, Institute of Engineers, Australia, pp. 469-477.

    Google Scholar 

  • Chiew, F. H. S., Whetton, P. H., McMahon, T. A., and Pittock, A. B.: 1995, 'Simulation of the Impact of Climate Change on Runoff and Soil Moisture in Australian Catchments', J. Hydrol. 167, 121-147.

    Google Scholar 

  • Close, A. F.: 1988, 'Potential Impact of Greenhouse Effect on the Water Resources of the River Murray', in Pearman, G. I. (ed.), Greenhouse: Planning for Climate Change, E. J. Brill, New York, pp. 312-323.

    Google Scholar 

  • DNRE: 1998, North East Victoria: Comprehensive Regional Assessment, Department of Natural Resources and Environment, Victoria.

    Google Scholar 

  • Evans, J. P. and Jakeman, A. J.: 1998, 'Development of a Simple, Catchment-Scale, Rainfall-Evapotranspiration-Runoff Model', Environ. Model. Software 13, 385-393.

    Google Scholar 

  • Evans, J. P., Oglesby, R. J., and Jakeman, A. J.: 1999, 'A New Method Improving the Simulation of Streamflow in Climate Models', in Oxley, L., Scrimgeour, F., and Jakeman, A. J. (eds.), International Congress on Modelling and Simulation, MODSIM99, University of Waikato, New Zealand, pp. 611-616.

    Google Scholar 

  • Feddema, J. J.: 1999, 'Future African Water Resources: Interactions between Soil Degradation and Global Warming', Clim. Change 42, 561-596.

    Google Scholar 

  • Giorgi, F., Brodeur, C. S., and Bates, G. T.: 1994, 'Regional Climate Change Scenarios over the United States Produced with a Nested Regional Climate Model', J. Climate 7, 375-399.

    Google Scholar 

  • Holmes, J.W. and Sinclair, J. A.: 1986, 'Water Yield from Some Afforested Catchments in Victoria', in Hydrology and Water Resources Symposium, Griffith University, Brisbane, pp. 214-218.

    Google Scholar 

  • Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.): 1992, Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.): 1990, Climate Change, the IPCC Scientific Assessment, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hughes, J. P.: 1993, A Class of Stochastic Models for Relating Synoptic Atmospheric Patterns to Local Hydrologic Phenomena, Ph.D. Thesis, Univ. Washington, Seattle.

    Google Scholar 

  • Hughes, J. P. and Guttorp, P.: 1994, 'A Class of Stochastic Models for Relating Synoptic Atmospheric Patterns to Regional Hydrologic Phenomena', Water Resour. Res. 30, 1535-1546.

    Google Scholar 

  • IPCC: 1996, Houghton, J. T., Filho, L. G. M., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995. The Science of Climate Change, Intergovernmental Panel on Climate Change, Cambridge, p. 572.

    Google Scholar 

  • Jakeman, A. J. et al.: 1993, 'Assessing Uncertainties in Hydrological Response to Climate at Large Scale', in Wilkinson, W. B. (ed.), Macroscale Modelling of the Hydrosphere, IAHS, Yokohama, pp. 37-47.

    Google Scholar 

  • Jakeman, A. J. and Hornberger, G. M.: 1993, 'How Much Complexity is Warranted in a Rainfall-Runoff Model?', Water Resour. Res. 29, 2637-2649.

    Google Scholar 

  • Jakeman, A. J., Littlewood, I. G., and Whitehead, P. G.: 1990, 'Computation of the Instantaneous Unit Hydrograph and Identifiable Component Flows with Application to Two Small Upland Catchments', J. Hydrol. 117, 275-300.

    Google Scholar 

  • Jensen, M. E., Burman, R. D., and Allen, R. G.: 1990, 'Evapotranspiration and Irrigation Water Requirements', in ASCE Manual on Engineering Practice, ASCE, New York, p. 332.

    Google Scholar 

  • Kristiansen, G.: 1993, Biological Effects of Climate Change. An Introduction to the Field and Survey of Current Research, Center for International Climate and Energy Research (CICERO), Global Change and Terrestrial Ecosystems (GCTE), International Geosphere-Biosphere Programme (IGBP), Oslo.

    Google Scholar 

  • Leavesley, G. H.: 1994, 'Modelling the Effects of Climate Change on Water Resources — a Review', Clim. Change 28, 159-177.

    Google Scholar 

  • Linacre, E.: 1992, Climate, Data and Resources. A Reference and Guide, Routledge, London, p. 366.

    Google Scholar 

  • Lins, H. F., Wolock, D.M. and McCabe, G. J.: 1997, 'Scale and Modeling Issues in Water Resources Planning', Clim. Change 37, 63-88.

    Google Scholar 

  • McGregor, J. L., Gordon, H. B., Watterson, I. G., Rotstayn, M. R., and Rotstayn, L. D.: 1993, 'The CSIRO 9-Level Atmospheric General Circulation Model. 25', CSIRO Division of Atmospheric Research, Melbourne.

    Google Scholar 

  • McGregor, J. L. and Walsh, K.: 1993, 'Nested Simulations of Perpetual January Climate over the Australian Region', J. Geograph. Res. 98, 23,283-23,290.

    Google Scholar 

  • Mehrotra, R.: 1999, 'Sensitivity of Runoff, Soil Moisture and Reservoir Design to Climate Change in Central Indian River Basins', Clim. Change 42, 725-757.

    Google Scholar 

  • Monserud, R. A., Tchebakova, N. M., and Leeemans, R.: 1993, 'Global Vegetation Change Predicted by the Modified Budyko Model', Clim. Change 25, 59-83.

    Google Scholar 

  • Nash, J. E. and Sutcliffe, J. V.: 1970, 'River Flow Forecasting through Conceptual Models, Part I — A Discussion of Principles', J Hydrol. 10, 282-290.

    Google Scholar 

  • Nathan, J. E., McMahon, T. A., and Finlayson, B. A.: 1988, 'The Impact of the Greenhouse Effect on Catchment Hydrology and Storage-Yield Relationships in Both Winter and Summer Rainfall Zones', in Pearman, G. I. (ed.), Greenhouse: Planning for Climate Change, E. J. Brill, New York, pp. 273-295.

    Google Scholar 

  • Nemec, J. and Schaake, J.: 1982, 'Sensitivity of Water Resource Systems to Climate Variation', J. Hydrol. Sci. 27, 327-343.

    Google Scholar 

  • Penman, H. L.: 1948, 'Natural Evaporation from Open Water, Bare Soil and Grass', Proc. Roy. Soc. London A193, 116-140.

    Google Scholar 

  • Pittock, A. B.: 1988, 'Actual and Anticipated Changes in Australia's Climate', in Pearman, G. I. (ed.), Greenhouse: Planning for Climate Change, E. J. Brill, New York, pp. 35-51.

    Google Scholar 

  • Pittock, A. B.: 1993, 'Climate Scenario Development', in Jakeman, A. J., Beck, M. B., and McAleer, M. J. (eds.), Modelling Change in Environmental Systems, John Wiley and Sons, Chichester, pp. 481-504.

    Google Scholar 

  • Post, D. A. and Jakeman, A. J.: 1996, 'Relationships between Catchment Attributes and Hydrological Response Characteristics in Small Australian Mountain Ash Catchments', Hydrol. Proc. 10, 877-892.

    Google Scholar 

  • Richardson, C. W. and Wright, D. A.: 1984, 'WGEN: A Model for Generating Daily Weather Variables', ARS-8, U.S. Dept. of Agriculture, Agricultural Res. Service.

  • Schreider, S. Y., Jakeman, A. J., Whetton, P. H., and Pittock, A. B.: 1997, 'Estimation of Climate Impact onWater Availability and Extreme Events for Snow-Free and Snow-Affected Catchments of the Murray-Darling Basin', Aust. J. Water Resour. 2, 35-46.

    Google Scholar 

  • Schreider, S. Y., Smith, D. I., and Jakeman, A. J.: 2000, 'Climate Change Impact on Urban Flooding', Clim. Change 47, 91-115.

    Google Scholar 

  • Semenov, M. A. and Barrow, E. M.: 1997, 'Use of a Stochastic Weather Generator in the Development of Climate Change Scenarios', Clim. Change 35, pp. 397-414.

    Google Scholar 

  • Tucker, G. B.: 1988, 'Climate Modelling: How Does It Work?', in Pearman, G. I. (ed.), Greenhouse: Planning for Climate Change, E. J. Brill, New York, pp. 22-34.

    Google Scholar 

  • Wheater, H. S., Jakeman, A. J., and Beven, K. J.: 1993, 'Progress and Directions in Rainfall-Runoff Modelling', in Jakeman, A. J., Beck, M. B., and McAleer, M. J. (eds.), Modelling Change in Environmental Systems, John Wiley and Sons Ltd., p. 584.

  • Whetton, P. H., Fowler, A. M., Haylock, M. R., and Pittock, A. B.: 1993, 'Implications of Climate Change due to the Enhanced Greenhouse Effect on Floods and Droughts in Australia', Clim. Change 25, 289-317.

    Google Scholar 

  • Whetton, P. H., Rayner, P. J., Pittock, A. B., and Haylock, M. R.: 1994, 'An Assessment of Possible Climate Change in the Australian Region Based on an Intercomparison of General Circulation Model Results', J. Climate 7, 441-463.

    Google Scholar 

  • Wilks, D. S.: 1992, 'Adapting Stochastic Weather Generation Algorithms for Climate Change Studies', Clim. Change 22, 67-84.

    Google Scholar 

  • Ye, W., Bates, B. C., Viney, N. R., Sivapalan, M., and Jakeman, A. J.: 1997, 'Performance of Conceptual Rainfall-Runoff Models in Low-Yielding Catchments', Water Resour. Res. 33, 153-166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J., Schreider, S. Hydrological Impacts of Climate Change on Inflows to Perth, Australia. Climatic Change 55, 361–393 (2002). https://doi.org/10.1023/A:1020588416541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020588416541

Keywords

Navigation