Skip to main content
Log in

Arctic Octahedron in Three-Dimensional Rhombus Tilings and Related Integer Solid Partitions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Three-dimensional integer partitions provide a convenient representation of codimension-one three-dimensional random rhombus tilings. Calculating the entropy for such a model is a notoriously difficult problem. We apply transition matrix Monte Carlo simulations to evaluate their entropy with high precision. We consider both free- and fixed-boundary tilings. Our results suggest that the ratio of free- and fixed-boundary entropies is σ free/σ fixed=3/2, and can be interpreted as the ratio of the volumes of two simple, nested, polyhedra. This finding supports a conjecture by Linde, Moore, and Nordahl concerning the “arctic octahedron phenomenon” in three-dimensional random tilings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. Shechtman et al., Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53:1951 (1984).

    Google Scholar 

  2. V. Elser, Comment on ''Quasicrystals: A New Class of Ordered Structures,'' Phys. Rev. Lett. 54:1730 (1985).

    Google Scholar 

  3. C. L. Henley, Random tiling models, in Quasicrystals, the State of the Art, D. P. Di Vincenzo and P. J. Steinhart, eds. (World Scientific, 1991), p. 429.

  4. M. Mihalkovic et al., Total-energy-based prediction of a quasicrystal structure, Phys. Rev. B (to appear, 2002).

  5. M. Widom, K. J. Strandburg, and R. H. Swendsen, Quasicrystal equilibrium state, Phys. Rev. Lett., 58:706 (1987).

    Google Scholar 

  6. H. Cohn, M. Larsen, and J. Propp, The shape of a typical boxed plane partition, New York J. of Math. 4:137 (1998); H. Cohn, R. Kenyon, and J. Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14:297 (2001).

    Google Scholar 

  7. M. Luby, D. Randall, and A. Sinclair, Markov chain algorithms for planar lattice structures, Proc. 36th Ann. Symp. on the Foundations of Comp. Sci. (IEEE, 1995), p. 150

  8. V. Elser, Solution of the dimer problem on an hexagonal lattice with boundary, J. Phys. A: Math. Gen. 17:1509 (1984).

    Google Scholar 

  9. R. Mosseri, F. Bailly, and C. Sire, Configurational entropy in random tiling models, J. Non-Cryst. Solids 153-154:201 (1993).

    Google Scholar 

  10. R. Mosseri and F. Bailly, Configurational entropy in octagonal tiling models, Int. J. Mod. Phys. B 6&7:1427 (1993).

    Google Scholar 

  11. N. Destainville, R. Mosseri, and F. Bailly, Configurational entropy of codimension-one tilings and directed membranes, J. Stat. Phys. 87:697 (1997).

    Google Scholar 

  12. N. Destainville, R. Mosseri, and F. Bailly, Fixed-boundary octagonal random tilings: A combinatorial approach, J. Stat. Phys. 102:147 (2001).

    Google Scholar 

  13. D. Grensing and G. Grensing, Boundary effects in the dimer problem on a non-bravais lattice, J. Math Phys. 24:620 (1983); D. Grensing, I. Carlsen, and H. Chr. Zapp, Some exact results for the dimer problem on plane lattices with nonstandard boundaries, Phil. Mag. A 41:777 (1980)

    Google Scholar 

  14. N. Destainville, Entropy and boundary conditions in random rhombus tilings, J. Phys. A: Math. Gen 31:6123 (1998).

    Google Scholar 

  15. J. Linde, C. Moore, and M. G. Nordahl, An n-dimensional generalization of the rhombus tiling, in Proceedings of the 1st International conference on Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG'01), M. Morvan, R. Cori, J. Mazoyer and R. Mosseri, eds., Discrete Math. and Theo. Comp. Sc. AA:23 (2001).

  16. N. Destainville and R. Mosseri (Unpublished, 2001)

  17. J. Propp (Unpublished, 2001)

  18. K. J. Strandburg, Entropy of a three-dimensional random-tiling quasicrystal, Phys. Rev. B 44:4644 (1991).

    Google Scholar 

  19. M. Duneau and A. Katz, Quasiperiodic patterns, Phys. Rev. Lett. 54:2688 (1985); A. P. Kalugin, A. Y. Kitaev, and L. S. Levitov, Al0.86Mn0.14: A six-dimensional crystal, JETP Lett. 41:145 (1985); A. P. Kalugin, A. Y. Kitaev, and L. S. Levitov, 6–dimensional properties of Al0.86Mn0.14, J. Phys. Lett. France 46:L601 (1985).

    Google Scholar 

  20. Recall that the configurational entropy per tile is the logarithm of the number of configurations, divided by the number of tiles.

  21. N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane, Ned. Akad. Wetensch. Proc. A84:39 (1981); Dualization of multigrids, J. Phys. France 47:C3–9 (1986).

    Google Scholar 

  22. To make the “free-boundary” entropy well defined,we need to add some weak constraintto ensure the tiling remains connected and reasonably compact.We presume that the free-boundary entropy equals that for strain-free periodic boundary conditions.

  23. M. Widom, Bethe ansatz solution of the square-triangle random tiling model, Phys. Rev. Lett. 70:2094 (1993); P. Kalugin, Square-triangle random-tiling model in the thermodynamic limit, J. Phys. A 27:3599 (1994); J. de Gier and B. Nienhuis, Exact solution of an octagonal random tiling model, Phys. Rev. Lett. 76:2918 (1996); J. de Gier and B. Nienhuis, Bethe ansatz solution of a decagonal rectangle-triangle random tiling, J. Phys. A 31:2141 (1998)

    Google Scholar 

  24. K. J. Strandburg, L.-H. Tang, and M. V. Jaric, Phason elasticity in entropic quasicrystals, Phys. Rev. Lett. 63:314 (1989); L.-H. Tang, Random-tiling quasicrystal in three dimensions, Phys. Rev. Lett. 64:2390 (1990); D. Joseph and M. Baake, Boundary conditions, entropy and the signature of random tilings, J. Phys. A 29:6709 (1996); M. Oxborrow and C. L. Henley, Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals, Phys. Rev. B 48:6966 (1993).

    Google Scholar 

  25. H.-C. Jeong and P. J. Steinhardt, Finite-temperature elasticity phase transition in decagonal quasicrystals, Phys. Rev. B 48:9394 (1993)

    Google Scholar 

  26. F. Gähler, Thermodynamics of random tiling quasicrystals, in Proceedings of the 5th International Conference on Quasicrystals, C. Janot and R. Mosseri, eds. (World Scientific, 1995), p. 236.

  27. L. J. Shaw and C. L. Henley, A transfer-matrix Monte Carlo study of random Penrose tilings, J. Phys. A 24:4129 (1991).

    Google Scholar 

  28. M. Widom, D. P. Deng, and C. L. Henley, Transfer-matrix analysis of a two-dimensional quasicrystal, Phys. Rev. Lett. 63:310 (1989); W. Li, H. Park, and M. Widom, Phase diagram of a random tiling quasicrystal, J. Stat. Phys. 66:1 (1992); M. E. J. Newman and C. L. Henley, Phason elasticity of a three-dimensional quasicrystal: A transfer matrix study, Phys. Rev. B 52:6386 (1995)

    Google Scholar 

  29. J. S. Wang, T. K. Tay, and R. H. Swendsen, Transition matrix Monte Carlo reweighting and dynamics, Phys. Rev. Lett. 82:476 (1999); R. H. Swendsen, B. Diggs, J.-S. Wang, S.-T. Li, and J. B. Kadane, Transition matrix Monte Carlo, Int. J. Mod. Phys. C 10:1563 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widom, M., Mosseri, R., Destainville, N. et al. Arctic Octahedron in Three-Dimensional Rhombus Tilings and Related Integer Solid Partitions. Journal of Statistical Physics 109, 945–965 (2002). https://doi.org/10.1023/A:1020464224385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020464224385

Navigation