Skip to main content
Log in

Completely Monotone Solutions of the Mode-Coupling Theory for Mixtures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We establish that a mode-coupling approximation for the dynamics of multi-component systems obeying Smoluchowski dynamics preserves a subtle yet fundamental property: the partial density correlation functions are, considered as matrices, completely monotone, i.e., they can exactly be written as superpositions of decaying exponentials only. This statement holds, no matter what further approximations are needed to calculate the theory's coupling parameters. The long-time limit of these functions fulfills a maximum property, and an iteration scheme for its numerical determination is given. We also show the existence of a unique solution to the equations of motion for which power series both for short times and small frequencies exist, the latter except at special points where ergodic-to-nonergodic transitions occur. These transitions are bifurcations that are proven to be of the cuspoid family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Götze and L. Sjögren, J. Math. Anal. Appl. 195:230-250 (1995).

    Google Scholar 

  2. S. R. Williams and W. van Megen, Phys. Rev. E 64:041502 (2001).

    Google Scholar 

  3. W. Götze, J. Phys.: Condens. Matter 11:A1-A45 (1999).

    Google Scholar 

  4. G. Nägele, Phys. Rep. 272:215-372 (1996).

    Google Scholar 

  5. G. Gripenberg, S. O. Londen, and O. Staffans, Volterra Integral and Functional Equations, in Encyclopedia of Mathematics and Its Applications, Vol. 34 (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  6. D. V. Widder, The Laplace Transform (Princeton University Press, Princeton, 1946).

    Google Scholar 

  7. J.-P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980).

    Google Scholar 

  8. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).

    Google Scholar 

  9. U. Bengtzelius, W. Götze, and A. Sjölander, J. Phys. C 17:5915-5934 (1984).

    Google Scholar 

  10. W. Götze, in Liquids, Freezing and Glass Transition, J. P. Hansen, D. Levesque, and J. Zinn-Justin, eds., Les Houches Summer Schools of Theoretical Physics, Session LI (1989) (North Holland, Amsterdam, 1991), pp. 287-503.

    Google Scholar 

  11. W. Götze, in Amorphous and Liquid Materials, E. Lüscher, G. Fritsch, and G. Jacucci, eds., NATO ASI Series (Nijhoff Publishers, Dordrecht, 1987), pp. 34-81.

    Google Scholar 

  12. M. Fuchs and A. Latz, Phys. A 201:1-13 (1993).

    Google Scholar 

  13. F. Sciortino and W. Kob, Phys. Rev. Lett. 86:648-651 (2001).

    Google Scholar 

  14. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed. (Wiley, New York, 1971).

    Google Scholar 

  15. F. R. Gantmacher, The Theory of Matrices, Vol. II (Chelsea Publishing, New York, 1974).

    Google Scholar 

  16. D. E. Evans and R. Høegh-Krohn, J. London Math. Soc. (2) 17:345-355 (1978).

    Google Scholar 

  17. V. I. Arnol'd, Russian Math. Surveys 30:1-75 (1975).

    Google Scholar 

  18. T. Franosch, M. Fuchs, W. Götze, M. R. Mayr, and A. P. Singh, Phys. Rev. E 55:7153-7176 (1997).

    Google Scholar 

  19. J. L. Lebowitz and J. S. Rowlinson, J. Chem. Phys. 41:133-138 (1964).

    Google Scholar 

  20. S.-H. Chong and W. Götze, Phys. Rev. E 65:041503 (2002).

    Google Scholar 

  21. R. Haussmann, Z. Phys. B 79:143-148 (1990).

    Google Scholar 

  22. T. Franosch, W. Götze, M. R. Mayr, and A. P. Singh, J. Non-Cryst. Solids 235-237:71-85 (1998).

    Google Scholar 

  23. M. Fuchs and Th. Voigtmann, Philos. Mag. B 79:1799-1806 (1999).

    Google Scholar 

  24. T. Gleim, W. Kob, and K. Binder, Phys. Rev. Lett. 81:4404-4407 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franosch, T., Voigtmann, T. Completely Monotone Solutions of the Mode-Coupling Theory for Mixtures. Journal of Statistical Physics 109, 237–259 (2002). https://doi.org/10.1023/A:1019991729106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019991729106

Navigation