Skip to main content
Log in

The Quadrature Discretization Method (QDM) in the solution of the Schrödinger equation

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Quadrature Discretization Method (QDM) is employed in the solution of several one‐dimensional Schrödinger equations that have received considerable attention in the literature. The QDM is based on the discretization of the wave function on a grid of points that coincide with the points of a quadrature. The quadrature is based on a set of non‐classical polynomials orthogonal with respect to a weight function. For a certain class of problems with potentials of the form that occur in supersymmetric quantum mechanics, the ground state wavefunction is known. In the present paper, the weight functions that are used are related to the ground state wavefunctions if known, or some approximate form. The eigenvalues and eigenfunctions of four different potential functions discussed extensively in the literature are calculated and the results are compared with published values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ari and M. Demiralp, J. Math. Phys. 26 (1985) 1179.

    Google Scholar 

  2. G.A. Arteca, F.M. Fernandez and E.A. Castro, J. Math. Phys. 25 (1984) 932.

    Google Scholar 

  3. G. Auberson and T. Boissiere, Nuovo Cimento B 75 (1983) 105.

    Google Scholar 

  4. K. Banerjee, Proc. Roy. Soc. London Ser. A 364 (1978) 265.

    Google Scholar 

  5. K. Banerjee, S.P. Bhatnagar, V. Choudhry and S.S. Kanwal, Proc. Roy. Soc. London Ser. A 360 (1978) 575.

    Google Scholar 

  6. N. Bessis and G. Bessis, J. Math. Phys. 21 (1980) 2760.

    Google Scholar 

  7. R. Blackmore and B. Shizgal, Phys. Rev. A 31 (1985) 1855.

    Google Scholar 

  8. M. Braun, S.A. Sofianos, D.G. Papageorgiou and I.E. Lagaris, J. Comput. Phys. 126 (1996) 315.

    Google Scholar 

  9. R.N. Chaudhuri and B. Mukherjee, J. Phys. A 16 (1983) 4031.

    Google Scholar 

  10. T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978).

    Google Scholar 

  11. A. Clarke and B. Shizgal, J. Comput. Phys. 104 (1993) 140.

    Google Scholar 

  12. A. Comtet, A.D. Bandrauk and D.K. Campbell, Phys. Lett. 150B (1985) 159.

    Google Scholar 

  13. Davis and P. Rabinowitz, Methods of Numerical Integration (Academic Press, New York, 1975).

    Google Scholar 

  14. R. Dutt, A. Khare and U.P. Sukhatme, Am. J. Phys. 56 (1988) 163.

    Google Scholar 

  15. R. Dutt, A. Mukherjee and Y.P. Varshni, Phys. Rev. A 52 (1995) 1750.

    Google Scholar 

  16. M.J. Englefield, J. Stat. Phys. 52 (1988) 369.

    Google Scholar 

  17. M.J. Englefield, Physica A 167 (1990) 877.

    Google Scholar 

  18. V. Fack and G. Van den Berghe, J. Phys. A 18 (1985) 3355.

    Google Scholar 

  19. F.M. Fernandez, J. Chem. Phys. 103 (1995) 6581.

    Google Scholar 

  20. F.M. Fernandez, J. Phys. A 28 (1995) 4043.

    Google Scholar 

  21. F.M. Fernandez, J. Math. Chem. 18 (1995) 197.

    Google Scholar 

  22. F.M. Fernandez, G.A. Arteca and E.A. Castro, Physica A 122 (1983) 37.

    Google Scholar 

  23. F.M. Fernandez and E.A. Castro, J. Phys. A 20 (1987) 5541.

    Google Scholar 

  24. F.M. Fernandez and R. Guardilo, J. Phys. A 26 (1993) 7169.

    Google Scholar 

  25. F.M. Fernandez, Q. Ma and R.H. Tipping, Phys. Rev. A 40 (1989) 6149.

    Google Scholar 

  26. F.M. Fernandez and R.H. Tipping, Canad. J. Phys. 74 (1996) 697.

    Google Scholar 

  27. G.P. Flessas, Phys. Lett. 83A (1981) 121; 100A (1984) 383.

    Google Scholar 

  28. G. Freud, Orthogonal Polynomials (Pergamon Press, New York, 1971).

    Google Scholar 

  29. W. Gautschi, J. Comput. Appl. Math. 12 (1985) 61.

    Google Scholar 

  30. I.C. Goyal, R.I. Gallawa and A.K. Gathak, Appl. Opt. 30 (1991) 2985.

    Google Scholar 

  31. I.C. Goyal, R.I. Gallawa and A.K. Gathak, Opt. Lett. 16 (1991) 30.

    Google Scholar 

  32. C.R. Handy, J. Phys. A 18 (1985) 3593.

    Google Scholar 

  33. A. Hautot, J. Comput. Phys. 39 (1981) 72.

    Google Scholar 

  34. A. Hautot, Phys. Rev. D 33 (1986) 437.

    Google Scholar 

  35. M. Kaluza, Comput. Phys. Comm. 79 (1994) 425.

    Google Scholar 

  36. R.S. Kaushal, J. Phys. A 12 (1979) L253.

    Google Scholar 

  37. C.S. Lai and H.E. Lin, J. Phys. A 15 (1982) L495.

    Google Scholar 

  38. K. Leung, B.D. Shizgal and H. Chen, J. Math. Chem. 24 (1998) 291.

    Google Scholar 

  39. G. Mansell, W. Merryfield, B. Shizgal and U. Weinert, Comput. Methods Appl. Mech. Engrg. 104 (1993) 295.

    Google Scholar 

  40. G. Marcilharcy and R. Pons, J. Phys. A 18 (1985) 2441.

    Google Scholar 

  41. A.K. Mitra, J. Math. Phys. 19 (1978) 2018.

    Google Scholar 

  42. T. Miyazawa, Phys. Rev. A 39 (1989) 1447.

    Google Scholar 

  43. P. Nevai, ed., Orthogonal Polynomials: Theory and Practice (Kluwer, Norwell, MA, 1990).

    Google Scholar 

  44. H. Okamoto, J. Phys. A 23 (1990) 5535.

    Google Scholar 

  45. H. Risken and K. Voigtlander, Z. Phys. B 54 (1984) 253.

    Google Scholar 

  46. H. Scherrer, H. Risken and T. Leiber, Phys. Rev. A 38 (1988) 3949.

    Google Scholar 

  47. B. Shizgal, J. Comput. Phys. 41 (1981) 309.

    Google Scholar 

  48. B.D. Shizgal, J. Molec. Struct. (Theochem) 391 (1997) 131.

    Google Scholar 

  49. B. Shizgal and R. Blackmore, J. Comput. Phys. 55 (1984) 313.

    Google Scholar 

  50. B.D. Shizgal and H. Chen, J. Chem. Phys. 104 (1996) 4137.

    Google Scholar 

  51. B.D. Shizgal and H. Chen, J. Chem. Phys. 107 (1997) 8051.

    Google Scholar 

  52. D. Singh and Y.P. Varshni, Phys. Rev. A 28 (1983) 2606.

    Google Scholar 

  53. A. Sinha, R. Roychoudhury and Y.P. Varshni, Canad. J. Phys. 74 (1996) 39.

    Google Scholar 

  54. H. Taseli and M. Demiralp, J. Phys. A 21 (1988) 3903.

    Google Scholar 

  55. Y.P. Varshni, Phys. Rev. 36 (1987) 3009.

    Google Scholar 

  56. Y.P. Varshni, N. Nag and R. Roychoudhury, Canad. J. Phys. 73 (1995) 73.

    Google Scholar 

  57. M.R.M. Witwit, J. Phys. A 24 (1991) 5291.

    Google Scholar 

  58. M.R.M. Witwit, J. Phys. 43 (1994) 279.

    Google Scholar 

  59. M.R.M. Witwit, J. Comput. Phys. 129 (1996) 220.

    Google Scholar 

  60. M.R.M. Witwit, J. Math. Chem. 19 (1996) 75.

    Google Scholar 

  61. M.R.M. Witwit, J. Math. Chem. 20 (1996) 273.

    Google Scholar 

  62. H.H. Yang, B.R. Seymour and B.D. Shizgal, Comp. Fluids 23 (1994) 929.

    Google Scholar 

  63. H.H. Yang and B. Shizgal, Comput. Methods Appl. Mech. Engrg. 118 (1994) 47.

    Google Scholar 

  64. M. Znojil, J. Phys. A 27 (1994) 7491.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Shizgal, B.D. The Quadrature Discretization Method (QDM) in the solution of the Schrödinger equation. Journal of Mathematical Chemistry 24, 321–343 (1998). https://doi.org/10.1023/A:1019191223869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019191223869

Keywords

Navigation