Skip to main content
Log in

Relativistic Statistical Mechanics and Particle Spectroscopy

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The formulation of manifestly covariant relativistic statistical mechanics as the description of an ensemble of events in spacetime parametrized by an invariant proper-time τ is reviewed. The linear and cubic mass spectra, which result from this formulation (the latter with the inclusion of anti-events) as the actual spectra of an individual hadronic multiplet and hot hadronic matter, respectively, are discussed. These spectra allow one to predict the masses of particles nucleated to quasi-levels in such an ensemble. As an example, the masses of the ground-state mesons and baryons are considered; the results are in excellent agreement with the measured hadron masses. Additivity of inverse Regge slopes is established and shown to be consistent with available experimental data on the D meson and Λc baryon production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. G. Currie, J. Math. Phys. 4, 470 (1963); D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963).

    Google Scholar 

  2. T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).

    Google Scholar 

  3. R. Arshansky and L. P. Horwitz, Found. Phys. 15, 701 (1985).

    Google Scholar 

  4. N. Shnerb and L. P. Horwitz, Phys. Rev. A 48, 4068 (1993).

    Google Scholar 

  5. W. Pauli, Theory of Relativity (Pergamon, Oxford, 1958).

    Google Scholar 

  6. L. P. Horwitz, W. C. Schieve, and C. Piron, Ann. Phys. (N.Y.) 137, 306 (1981).

    Google Scholar 

  7. L. Burakovsky and P. Horwitz, Physica A 201, 666 (1993).

    Google Scholar 

  8. J. I Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  9. H. J. Borchers and R. N. Sen, Comm. Math. Phys. 21, 101 (1975).

    Google Scholar 

  10. H. Narnhofer, M. Requardt, and W. Thirring, Comm. Math. Phys. 92, 247 (1983).

    Google Scholar 

  11. E. C. G. Stueckelberg, Helv. Phys. Acta 14, 372, 588 (1941); 15, 23 (1942).

    Google Scholar 

  12. L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973).

    Google Scholar 

  13. R. Arshansky, L. P. Horwitz, and Y. Lavie, Found. Phys. 13, 1167 (1983).

    Google Scholar 

  14. L. Burakovsky, Found. Phys. 28 (1998).

  15. L. Burakovsky, L. P. Horwitz, and W. C. Schieve, Found. Phys. Lett. 10, 503 (1997).

    Google Scholar 

  16. E. V. Shuryak, The QCD Vacuum, Hadrons and the Superdense Matter (World Scientific, Singapore, 1988).

    Google Scholar 

  17. L. Burakovsky and L. P. Horwitz, Found. Phys. Lett. 9, 561 (1996).

    Google Scholar 

  18. L. Burakovsky and L. P. Horwitz, Found. Phys. Lett. 10, 61 (1997).

    Google Scholar 

  19. L. Burakovsky and L. P. Horwitz, Nucl. Phys. A 614, 373 (1997).

    Google Scholar 

  20. L. Burakovsky and L. P. Horwitz, Found. Phys. 25, 1127 (1995).

    Google Scholar 

  21. D. E. Miller and E. Suhonen, Phys. Rev. D 26, 2944 (1982).

    Google Scholar 

  22. S. Okubo, Prog. Theor. Phys. 27, 949 (1962); 28, 24 (1962); M. Gell-Mann and Y. Ne’eman, The Eightfold Way (Benjamin, New York, 1964).

    Google Scholar 

  23. L. Burakovsky and L. P. Horwitz, Nucl. Phys. A 609, 585 (1996).

    Google Scholar 

  24. R. M. Barnett et al., Phys. Rev. D 54, 1 (1996).

    Google Scholar 

  25. L. Burakovsky, T. Goldman, and L. P. Horwitz, Phys. Rev. D 56, 7119 (1997).

    Google Scholar 

  26. L. Burakovsky and L. P. Horwitz, J. Phys. A 27, 4725 (1994).

    Google Scholar 

  27. G. Veneziano, Nuovo Cimento A 57, 190 (1968).

    Google Scholar 

  28. J. Pasupathy, Phys. Rev. Lett. 37, 1336 (1976); K. Igi, Phys. Lett. B 66, 276 (1977); Phys. Rev. D 16, 196 (1977).

    Google Scholar 

  29. K. Kawarabayashi, S. Kitakado, and H. Yabuki, Phys. Lett. B 28, 432 (1969).

    Google Scholar 

  30. R. C. Brower, J. Ellis, M. G. Schmidt, and J. H. Weis, Nucl. Phys. B 128, 175 (1977).

    Google Scholar 

  31. N. A. Kobylinsky, E. S. Martynov, and A. B. Prognimak, Ukr. Phys. Zh. 24, 969 (1979).

    Google Scholar 

  32. V. V. Dixit and L. A. Balazs, Phys. Rev. D 20, 816 (1979).

    Google Scholar 

  33. K. Igi and S. Yazaki, Phys. Lett. B 71, 158 (1977).

    Google Scholar 

  34. L. Burakovsky, T. Goldman, and L. P. Horwitz, Phys. Rev. D 56, 7124 (1997).

    Google Scholar 

  35. L. Burakovsky, T. Goldman, and L. P. Horwitz, J. Phys. G 24, 771 (1998).

    Google Scholar 

  36. L. Burakovsky, T. Goldman, and L. P. Horwitz, New Quadratic Mass Relations for Heavy Mesons, FERMILAB-PUB-97-265-T (hep-ph/9708468).

  37. M. Aguilar-Benitez et al., Phys. Lett. B 161, 400 (1985).

    Google Scholar 

  38. S. Berlag et al., Z. Phys. C 49, 555 (1991).

    Google Scholar 

  39. G. A. Alves et al., Phys. Rev. Lett. 69, 3147 (1992).

    Google Scholar 

  40. S. Aoki et al., Prog. Theor. Phys. 87, 1315 (1992).

    Google Scholar 

  41. S. Berlag et al., Phys. Lett. B 247, 113 (1990).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burakovsky, L. Relativistic Statistical Mechanics and Particle Spectroscopy. Foundations of Physics 28, 1577–1594 (1998). https://doi.org/10.1023/A:1018890402963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018890402963

Keywords

Navigation