Skip to main content
Log in

Entangled Fields in Multiple Cavities as a Testing Ground for Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Entangled states provide the necessary tools for conceptual tests of quantum mechanics and other alternative theories. These tests include local hidden variables theories, pre- and postselective quantum mechanics, QND measurements, complementarity, and tests of quantum mechanics itself against, e.g., the so-called causal communication constraint. We show how to produce various nonlocal entangled states of multiple cavity fields that are useful for these tests, using cavity QED techniques. First, we discuss the generation of the Bell basis states in two entangled cavities, when there is at most one photon in either of the cavities, and then a straightforward generalization to similar N-cavity states. We then show how to produce a nonlocal entangled state when there is precisely one photon hiding in three cavities. These states can be produced by sending appropriately prepared atoms through the cavities. As applications we briefly review two proposals: one to test quantum mechanics against the causal communication constraint using a two-cavity entangled state and the other to test pre- and postselective quantum mechanics using a three-cavity entangled state. The outcome of the latter experiment can be discussed from the viewpoint of the consistent histories interpretation of quantum mechanics and therefore provides an opportunity to subject quantum cosmological ideas to laboratory tests. Finally, we point out the relation between these schemes and the schemes suggested for quantum computing, teleportation, and quantum copying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. S. Bell, Physics 1, 195 (1964).

    Google Scholar 

  2. D. Greenberger, M. Horne, and A. Zeilinger, in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer Academic, Dordrecht, 1989).

    Google Scholar 

  3. B. S. Tsirelson, Lett. Math. Phys. 4, 93 (1980).

    Google Scholar 

  4. M. Hillery and B. Yurke, Quantum Opt. 7, 215 (1995).

    Google Scholar 

  5. J. A. Bergou, Acta Phys. Slov. 46, 241 (1996).

    Google Scholar 

  6. J. Cirac and P. Zoller, Phys. Rev. A 50, R2799 (1994).

    Google Scholar 

  7. P. Bogar and J. Bergou, Phys. Rev. A 53, 49 (1996).

    Google Scholar 

  8. M. Freyberger, Phys. Rev. A 51, 3347 (1995).

    Google Scholar 

  9. C. C. Gerry, Phys. Rev. A 53, 4583 (1996).

    Google Scholar 

  10. T. Sleator and H. Weinfurter, Ann. N.Y. Acad. Sci. 755, 715 (1995).

    Google Scholar 

  11. M. O. Scully and H. Walther, Phys. Rev. A 39, 5229 (1989), in the context of atom interferometry; J. Bergou and M. Hillery, Phys. Rev. A 44, 7502 (1991), in the context of twocavity entanglement; and L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. A 50, R895 (1994), in the context of teleportation.

    Google Scholar 

  12. Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Phys. Rev. B 134, 1410 (1964).

    Google Scholar 

  13. R. Omnés, Rev. Mod. Phys. 64, 339 (1992).

    Google Scholar 

  14. M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, Phys. Rev. A 45, 5193 (1992).

    Google Scholar 

  15. J. A. Bergou and M. Hillery, Phys. Rev. A (in press).

  16. J. A. Bergou, J. Mod. Opt. ( in press).

  17. R. B. Griffiths, J. Stat. Phys. 36, 219 (1984).

    Google Scholar 

  18. M. Gell-Mann and J. B. Hartle, in Complexity, Entropy and the Physics of Information, W. H. Zurek, ed. (Addison-Wesley, Redwood City, CA, 1991).

    Google Scholar 

  19. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wooters, Phys. Rev. Lett. 70, 1895 (1993).

    Google Scholar 

  20. A. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Google Scholar 

  21. V. Buzek and M. Hillery, Phys. Rev. A 54, 1844 (1996).

    Google Scholar 

  22. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 76, 1800 (1996).

    Google Scholar 

  23. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 77, 4887 (1996).

    Google Scholar 

  24. A. Kent, “Consistent sets contradict,” Preprint gr-qc/9604012, Los Alamos preprint server.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergou, J.A. Entangled Fields in Multiple Cavities as a Testing Ground for Quantum Mechanics. Foundations of Physics 29, 503–519 (1999). https://doi.org/10.1023/A:1018839507274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018839507274

Keywords

Navigation