Skip to main content
Log in

A Model of the Electron in a 6-Dimensional Spacetime

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The electron is considered as a massless point-particle which moves in a spacetime with (3+3) dimensions subjected to a field that attracts it towards the (3+1) standard spacetime. This field is assumed to be described by the radial time component of the e.m. 6-potential and to be due to the vacuum polarization arising when the charge of the electron is removed from the (3+1) spacetime. The pertinent Klein-Gordon equitation in 6 dimensions is solved and the right values for the electron magnetic moment and spin are derived. The rest mass of the electron, as it appears in the standard (3+1) spacetime, is obtained as an integration constant from the motion in the two extra time dimensions. The very simple form assumed as a first approximation for the attractive potential does not give quantized rest masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. H. Mac Gregor, The Enigmatic Electron (Kluwer, Dordrecht, 1992).

    Google Scholar 

  2. E. Fermi, Rev. Mod. Phys. 4, 87 (1932).

    Google Scholar 

  3. A. O. Barut, in Hestenes and Weingartshofer (1991).

  4. D. Hestenes and A. Weingartshofer, The Electron: New Theory and Experiment (Kluwer, Dordrecht, 1991); J. Keller and Z. Oziewicz, The Theory of the Electron (UNAM, Mexico City, 1997); J. Dowling, Electron Theory and QED, NATO ASI Series B Physics, Vol. 358 (Plenum, New York, 1997).

    Google Scholar 

  5. G. Salesi and E. Recami, Phys. Lett. A 190, 137 (1994); A 195, 389 (1994).

    Google Scholar 

  6. M. Bunge, Nuovo Cimento 1, 977 (1955).

    Google Scholar 

  7. E. Recami and G. Salesi, Phys. Rev. A 57, 98 (1998).

    Google Scholar 

  8. A. O. Barut, Mod. Phys. Lett. A 7, 1381 (1992).

    Google Scholar 

  9. P. A. M. Dirac, Proc. Roy. Soc. A 167, 148 (1938).

    Google Scholar 

  10. D. Gutkowski, M. Moles, and J. P. Vigier, Nuovo Cimento B 39, 193 (1977).

    Google Scholar 

  11. P. Caldirola, Riv. Nuovo Cimento 2, 1 (1979), and references therein.

    Google Scholar 

  12. A. O. Barut and N. Zanghi, Phys. Rev. Lett. 52, 2009 (1984).

    Google Scholar 

  13. A. O. Barut and N. Udal, Phys. Rev. A 40, 5404 (1989).

    Google Scholar 

  14. E. A. B. Cole, Nuovo Cimento A 40, 171 (1977).

    Google Scholar 

  15. G. Dattoli and R. Mignani, Lett. Nuovo Cimento 22, 65 (1978).

    Google Scholar 

  16. P. Dewers, Can. J. Phys. 53, 1687 (1975).

    Google Scholar 

  17. R. Mignani and E. Recami, Lett. Nuovo Cimento 16, 449 (1976).

    Google Scholar 

  18. P. T. Pappas, Nuovo Cimento B 68, 111 (1982).

    Google Scholar 

  19. C. E. Patty, Nuovo Cimento B 70, 65 (1982).

    Google Scholar 

  20. M. Pavsic, J. Phys. A 14, 3217 (1981).

    Google Scholar 

  21. V. Vysin, Lett. Nuovo Cimento 22, 76 (1978).

    Google Scholar 

  22. G. Ziino, Lett. Nuovo Cimento 31, 629 (1981).

    Google Scholar 

  23. C. E. Patty and L. L. Smalley, Phys. Rev. D 32, 891 (1985).

    Google Scholar 

  24. J. B. Boyling and E. A. B. Cole, Int. J. Theor. Phys. 32, 801 (1993).

    Google Scholar 

  25. E. A. B. Cole and I. M. Starr, Nuovo Cimento B 105, 1091 (1990).

    Google Scholar 

  26. E. A. B. Cole, Phys. Lett. 76, 371 (1980).

    Google Scholar 

  27. E. A. B. Cole, J. Phys. A 13, 109 (1980).

    Google Scholar 

  28. J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157(1945).

    Google Scholar 

  29. J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425 (1949).

    Google Scholar 

  30. D. Hestenes, Found. Phys. 15, 63 (1985).

    Google Scholar 

  31. D. Hestenes, Found. Phys. 20, 1213 (1990).

    Google Scholar 

  32. D. Hestenes, Found. Phys. 23, 365 (1993).

    Google Scholar 

  33. M. Pvasic, Lett. Nuovo Cimento 17, 44 (1976).

    Google Scholar 

  34. L. Landau and E. Lifshitz, Théorie du Champ (Moscow, 1957).

  35. T. Levi Civita, The Absolute Differential Calculus (Blackie, London, 1954).

    Google Scholar 

  36. P. Caldirola, Lett. Nuovo Cimento 27, 225 (1980).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanciani, P. A Model of the Electron in a 6-Dimensional Spacetime. Foundations of Physics 29, 251–265 (1999). https://doi.org/10.1023/A:1018825722778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018825722778

Keywords

Navigation