Skip to main content
Log in

All the Bell Inequalities

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Bell inequalities are derived for any number of observers, any number of alternative setups for each one of them and any number of distinct outcomes for each experiment. It is shown that if a physical system consists of several distant subsystems, and if the results of tests performed on the latter are determined by local variables with objective values, then the joint probabilities for triggering any given set of distant detectors are convex combinations of a finite number of Boolean arrays, whose components are either 0 or 1 according to a simple rule. This convexity property is both necessary and sufficient for the existence of local objective variables. It leads to a simple graphical method which produces a large number of generalized Clauser-Horne inequalities corresponding to the faces of a convex polytope. It is plausible that quantum systems whose density matrix has a positive partial transposition satisfy all these inequalities, and therefore are compatible with local objective variables, even if their quantum properties are essentially non-local.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Bell, Physics (N.Y.) 1, 195 (1964).

    Google Scholar 

  2. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

    Google Scholar 

  3. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1993), Chap. 6, and references therein.

    Google Scholar 

  4. J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974).

    Google Scholar 

  5. N. D. Mermin, Am. J. Phys. 49, 940 (1981).

    Google Scholar 

  6. J. S. Bell, in Foundations of Quantum Mechanics, Proceedings of the International School of PhysicsEnrico Fermi,” Course XLIX, B. d'Espagnat, ed. (Academic, New York, 1971).

    Google Scholar 

  7. E. Schrödinger, Naturwissenschaften 23, 800, 823, 844 (1935); translation in Quantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, NJ, 1983), p. 152.

    Google Scholar 

  8. A. Garg and N. D. Mermin, Found. Phys. 14, 1 (1984).

    Google Scholar 

  9. I. Pitowsky, Br. J. Philos. Sci. 45, 95 (1994).

    Google Scholar 

  10. R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970), p. 200.

    Google Scholar 

  11. S. L. Braunstein and C. M. Caves, Ann. Phys. (N.Y.) 202, 22 (1990).

    Google Scholar 

  12. A. Garg and N. D. Mermin, Phys. Rev. Lett. 49, 1220 (1982).

    Google Scholar 

  13. N. D. Mermin, Philos. Sci. 50, 359 (1983).

    Google Scholar 

  14. P. Horodecki and R. Horodecki, Phys. Rev. Lett. 76, 2196 (1996).

    Google Scholar 

  15. N. D. Mermin and A. Garg, Phys. Rev. Lett. 76, 2197 (1996).

    Google Scholar 

  16. R. Horodecki, P. Horodecki, and M. Horodecki, Phys. Lett. A 200, 340 (1995).

    Google Scholar 

  17. N. D. Mermin, Phys. Rev Lett. 65, 1838 (1990).

    Google Scholar 

  18. M. Ardehali, Phys. Rev. A 46, 5375 (1992).

    Google Scholar 

  19. N. Gisin and H. Bechmann-Pasquinucci, Phys. Lett. A 246, 1 (1998).

    Google Scholar 

  20. S. L. Braunstein and A. Mann, Phys. Rev. A 47, 2427 (1993).

    Google Scholar 

  21. R. F. Werner, Phys. Rev. A 40, 4277 (1989).

    Google Scholar 

  22. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

    Google Scholar 

  23. P. Busch and P. Lahti, Found. Phys. Lett. 10, 113 (1997).

    Google Scholar 

  24. A. Peres, Phys. Rev. A 54, 2685 (1996).

    Google Scholar 

  25. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996).

    Google Scholar 

  26. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).

    Google Scholar 

  27. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996).

    Google Scholar 

  28. S. Popescu, Phys. Rev. Lett. 74, 2619 (1995).

    Google Scholar 

  29. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998).

    Google Scholar 

  30. A. Garg and N. D. Mermin, Phys. Rev. D 27, 339 (1983), Sec. III.

    Google Scholar 

  31. I. Pitowski, Math. Program. 50, 395 (1991).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peres, A. All the Bell Inequalities. Foundations of Physics 29, 589–614 (1999). https://doi.org/10.1023/A:1018816310000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018816310000

Keywords

Navigation