Skip to main content
Log in

Multiparticle Entanglement

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Greenberger-Horne-Zeilinger state is the most famous example of a state with multiparticle entanglement. In this article we describe a group theoretic framework we have been developing for understanding the entanglement in general states of two or more quantum particles. As far as entanglement is concerned, two states of n spin-1/2 particles are equivalent if they are on the same orbit of the group of local rotations (U(2)n). We consider both pure and mixed states and calculate the number of independent parameters needed to describe such states up to this equivalence. We describe how the entanglement of states in a given equivalence class may be characterized by the stability group of the action of the group of local rotations on any of the states in the class. We also show how to calculate invariants under the group of local actions for both pure and mixed states. In the case of mixed states we are able to explicitly exhibit sets of invariants which allow one to determine whether two generic mixed states are equivalent up to local unitary transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. B. Greenberger, M. Horne, and A. Zeilinger, in Bell’ s Theorem, Quantum Theory and Conceptions of the Universe, M. Kafatos, ed. (Kluwer Academic, Dordrecht, 1989).

    Google Scholar 

  2. J. Bell, Physics 1, 195 (1964).

    Google Scholar 

  3. R. Jozsa, in Geometric Issues in the Foundations of Science, S. Huggett, L. Mason, K. P. Tod, S. T. Tsou, and N. M. J. Woodhouse, eds. (OUP, 1997).

  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys.Rev. Lett. 70, 1895 (1993).

    Google Scholar 

  5. A. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Google Scholar 

  6. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Phys. Rev.Lett. 77, 2818 (1996).

    Google Scholar 

  7. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 70, 2046 (1996).

    Google Scholar 

  8. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).

    Google Scholar 

  9. N. Gisin, Phys. Lett. A 210, 151 (1996).

    Google Scholar 

  10. M. Horodecki, P. Horodecki, and R. Horodecki, quant-ph/9801069.

  11. D. B. Greenberger, M. Horne, and A. Zeilinger, Phys. Today 42, 22 (1993).

    Google Scholar 

  12. N. Linden and S. Popescu, Fortsch. Phys. 46, 567 (1998).

    Google Scholar 

  13. N. Linden, S. Popescu, and A. Sudbery, quant-ph/9801076.

  14. A. Shimony, in The Dilemma of Einstein, Podolsy and Rosen 60 Years Later (Annals of the Israel Physical Society, 12 ), A. Mann and M. Revzen, eds. (Adam Hilger, Bristol, 1996).

    Google Scholar 

  15. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).

    Google Scholar 

  16. S. Popescu and D. Rohrlich, Phys. Rev. A 56, 3219 (1997).

    Google Scholar 

  17. M. Horodecki and R. Horodecki, quant-ph/9705003.

  18. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 200, 340 (1995).

    Google Scholar 

  19. P. Horodecki and R. Horodecki, Phys. Lett. A 210, 227 (1996).

    Google Scholar 

  20. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 222, 21 (1996).

    Google Scholar 

  21. A. Peres, quant-ph/9504006, and references therein.

  22. D. Fivel, private communication.

  23. J. Schlienz and G. Mahler, Phys. Lett. A 224, 39 (1996).

    Google Scholar 

  24. M. Grassl, M. Rötteler, and T. Beth, quant-ph/9712040.

  25. E. Rains, quant-ph/9704042.

  26. J. Schlienz, Ph.D. Thesis.

  27. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. V, 2nd ed. (Publish or Perish, Houston, TX, 1979).

    Google Scholar 

  28. See, e.g., D. Cox, J. Little, and D. O'shea, Ideals, Varieties and Algorithms (Springer, New York, 1992), B. Sturmfels, Algorithms in Invariant Theory (Springer, Vienna, 1993).

    Google Scholar 

  29. J. L. Alperin and R. B. Bell, Groups and Representations (Springer, New York, 1995).

    Google Scholar 

  30. H. A. Carteret and A. Sudbery, manuscript in preparation.

  31. N. Linden, S. Massar, and S. Popescu, Phys. Rev. Lett. 81, 3279 (1998).

    Google Scholar 

  32. S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).

    Google Scholar 

  33. W. K. Wootters, quant-ph/9709029. 552

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carteret, H.A., Linden, N., Popescu, S. et al. Multiparticle Entanglement. Foundations of Physics 29, 527–552 (1999). https://doi.org/10.1023/A:1018808108183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018808108183

Keywords

Navigation