Skip to main content
Log in

Effective Potential for the Reaction-Diffusion-Decay System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In previous work we have developed a general method for casting stochastic partial differential equations (SPDEs) into a functional integral formalism, and have derived the one-loop effective potential for these systems. In this paper we apply the same formalism to a specific field theory of considerable interest, the reaction-diffusion-decay system. When this field theory is subject to white noise we can calculate the one-loop effective potential (for arbitrary polynomial reaction kinetics) and show that it is one-loop ultraviolet renormalizable in 1, 2, and 3 space dimensions. For specific choices of interaction terms the one-loop renormalizability can be extended to higher dimensions. We also show how to include the effects of fluctuations in the study of pattern formation away from equilibrium, and conclude that noise affects the stability of the system in a way which is calculable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. J. D. Murray, Mathematical Biology (Springer-Verlag, Berlin, Heidelberg, 1989).

    Google Scholar 

  2. D. Walgraef, Spatio-Temporal Pattern Formation (Springer-Verlag, Berlin, Heidelberg, 1997).

    Google Scholar 

  3. P. Ball, The Self-Made Tapestry: Pattern Formation in Nature (Oxford University Press, Oxford, 1998).

    Google Scholar 

  4. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Amsterdam, New York, North Holland, 1992).

  5. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Berlin, New York, Springer-Verlag, 1997).

    Google Scholar 

  6. H. Mori and Y. Kuramoto, Dissipative Structures and Chaos (Berlin, New York, Springer-Verlag, 1998).

    Google Scholar 

  7. D. Hochberg, C. Molina-París, J. Pérez-Mercader, and M. Visser, Effective Action for Stochastic Partial Differential Equations, cond-mat/9904215. Phys. Rev. E. 60:6343–6360 (1999).

    Google Scholar 

  8. P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8:423–508 (1973).

    Google Scholar 

  9. C. De Dominicis and L. Peliti, Phys. Rev. B 18:353–376 (1978).

    Google Scholar 

  10. L. Onsager and S. Machlup, Phys. Rev. 91:1505 (1953).

    Google Scholar 

  11. G. L. Eyink, J. Stat. Phys. 83:955 (1996); G. L. Eyjnk, Phys. Rev. E 54:3419 (1996); F. J. Alexander and G. L. Eyink, Phys. Rev. Lett. 78:1 (1997).

    Google Scholar 

  12. A. Crisanti and U. M. Bettolo Marconi, Phys. Rev. E 51:4237 (1995).

    Google Scholar 

  13. M. Doi, J. Phys. A: Math. Gen. 9:1465, 1479 (1976).

    Google Scholar 

  14. L. Peliti, J. Physique 46:1469 (1985).

    Google Scholar 

  15. P. Grassberger and M. Scheunert, Fortschr. Phys. 28:547 (1980); P. Grassberger, F. Krause, and T. von der Twer, J. Phys. A: Math. Gen. 17:L105 (1984).

    Google Scholar 

  16. J. Cardy, in Proceedings of Mathematical Beauty of Physics (Adv. Ser. Math. Phys. 24), J. B. Zuber, ed. (cond-mat/9607163).

  17. M. J. Howard and U. C. Täuber, J. Phys. A: Math. Gen. 30:7721 (1977).

    Google Scholar 

  18. P.-A. Rey and J. Cardy, J. Phys. A: Math. Gen. 32:1585 (1999).

    Google Scholar 

  19. B. P. Lee, J. Phys. A: Math. Gen. 27:2633 (1984).

    Google Scholar 

  20. B. P. Lee and J. Cardy, Phys. Rev. E 50:3287 (1994).

    Google Scholar 

  21. B. P. Lee, and J. Cardy, J. Stat. Phys. 80:971 (1995).

    Google Scholar 

  22. S. Weinberg, The Quantum Theory of Fields I & II (Cambridge University Press, Cambridge, England, 1996).

    Google Scholar 

  23. R. J. Rivers, Path Integral Methods in Quantum Field Theory (Cambridge University Press, Cambridge, England, 1987).

    Google Scholar 

  24. C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980).

    Google Scholar 

  25. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, England, 1996).

    Google Scholar 

  26. D. Hochberg, C. Molina-París, J. Pérez-Mercader, and M. Visser, Effective potential for the massless KPZ equation, cond-mat/9904391, Physica A 280: (2000), in press.

  27. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980).

    Google Scholar 

  28. D. Hochberg, C. Molina-París, J. Pérez-Mercader, and M. Visser, Seeley-DeWitt coefficients, Heat Kernel renormalization, and effective action for the reaction-diffusion-decay system, in preparation.

  29. D. Hochberg, C. Molina-París, J. Pérez-Mercader, and M. Visser, Int. J. Mod. Phys. A 14(10):1485 (1999).

    Google Scholar 

  30. K. Staliunas, Phys. Rev. Lett. 81:81 (1998).

    Google Scholar 

  31. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65:852 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochberg, D., Molina-París, C., Pérez-Mercader, J. et al. Effective Potential for the Reaction-Diffusion-Decay System. Journal of Statistical Physics 99, 903–941 (2000). https://doi.org/10.1023/A:1018699630306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018699630306

Navigation