Skip to main content
Log in

Coexistence of Partially Disordered/Ordered Phases in an Extended Potts Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a generalization of the standard Potts model in which there are q=r+s states with an interaction that distinguishes the two subspecies. We develop a graphical representation (of the FK type) for the system and show that this representation may be incorporated directly into reflection positivity arguments. Using combinations of these techniques, we establish detailed properties of the phase diagram including the existence of sharp triple points. Whenever relevant, the phases are characterized by the percolation properties of the underlying representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • [AB] M. Aizenman and D. J. Barsky, Sharpness of the phase transition in percolation models, Commun. Math. Phys. 108:489–526 (1987).

    Google Scholar 

  • [ACCN] M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman,Discontinuity of the magnetization in one-dimensional 1/|x-y|2 Ising and Potts models, J. Stat. Phys. 50:1–40 (1988).

    Google Scholar 

  • [B] M. Biskup, Reflection positivity of the random-cluster measure invalidated for non-integer q, J. Stat. Phys. 92:369–375 (1998).

    Google Scholar 

  • [BC] C. Borgs and J. Chayes, The covariance matrix of the Potts model: a random cluster analysis, Jour. Stat. Phys. 82:1235–1297 (1996).

    Google Scholar 

  • [BBCK] M. Biskup, C. Borgs, J. T. Chayes, and R. Kotecký, Gibbs states of graphical representations of the Potts model with external fields, J. Math. Phys. 41:1170–1210 (2000).

    Google Scholar 

  • [vdBM] J. van den Berg and C. Maes, Disagreement percolation in the study of Markov fields, Ann. Prob. 22:749–763 (1994).

    Google Scholar 

  • [C] L. Chayes, Discontinuity of the spin-wave stiffness in the two-dimensional XY model, Commun. Math. Phys. 197:623–640 (1998).

    Google Scholar 

  • [CKS] L. Chayes, R. Kotecký, and S. B. Shlosman, Aggregation and intermediate phases in dilute spin systems, Commun. Math. Phys. 171:203–232 (1995).

    Google Scholar 

  • [CM] L. Chayes and J. Machta, Graphical representations and cluster algorithms. Part I: Discrete spin systems, Physica A 239:542–601 (1997).

    Google Scholar 

  • [DS] R. Dobrushin and S. B. Shlosman, Completely analytical interactions: constructive description, J. Stat. Phys. 46:983–1014 (1987).

    Google Scholar 

  • [ES] R. G. Edwards and A. D. Sokal, Generalization of the Fortuin-Kasteleyn- Swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D 38: 2009–2012 (1988).

    Google Scholar 

  • [vEFS] A. C. D. van Enter, R. Ferná ndez, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys. 72:879–1167 (1993).

    Google Scholar 

  • [FK] C. M. Fortuin and P. W. Kasteleyn, On the random cluster model I. Introduction and relation to other models, Physica 57:536–564 (1972).

    Google Scholar 

  • [FL] J. Frö hlich and E. H. Lieb, Phase transitions in anisotropic lattice spin systems, Commun. Math. Phys. 60:233–267 (1978).

    Google Scholar 

  • [Ge] H.-O. Georgii, Gibbs Measures and Phase Transitions, vol. 9, De Gruyter Studies in Mathematics (De Gruyter, Berlin, 1988).

    Google Scholar 

  • [Gr] G. R. Grimmett, The stochastic random-cluster process and the uniqueness of random-cluster measures, Ann. Prob. 23:1461–1510 (1995).

    Google Scholar 

  • [KS] R. Kotecký and S. B. Shlosman, First-order transitions in large entropy lattice models, Commun. Math. Phys. 83:493–515 (1982).

    Google Scholar 

  • [L] T. M. Liggett, Interacting Particle Systems (Springer-Verlag, Heidelberg, New York, 1985).

    Google Scholar 

  • [LM] J. L. Lebowitz and A. E. Mazel, Improved Peierls argument for high-dimensional Ising models, J. Stat. Phys. 90:1051–1059 (1998).

    Google Scholar 

  • [LMR] L. Laanait, N. Masaif, and J. Ruiz, Phase coexistence in partially symmetric q-state models, J. Stat. Phys. 72:721–736 (1993).

    Google Scholar 

  • [MMS] M. V. Menshikov, S. A. Molchanov, and A. F. Sidorenko, Percolation theory and some applications, Series of Probability Theory, Mathematical Physics, Theoretical Cybernetics 24:53–110 (1986).

    Google Scholar 

  • [MVdV] C. Maes and K. Vande Velde, The fuzzy Potts model, J. Phys. A: Math. Gen. 28:4261–4270 (1995).

    Google Scholar 

  • [PVdV] C. E. Pfister and K. Vande Velde, Almost sure quasilocality in the random cluster model, J. Stat. Phys. 79:765–774 (1995).

    Google Scholar 

  • [S] S. B. Shlosman, The method of reflection positivity in the mathematical theory of first-order phase transitions, Russ. Math. Surv. 41(3):83–134 (1986).

    Google Scholar 

  • [St] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36:423–439 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biskup, M., Chayes, L. & Kotecký, R. Coexistence of Partially Disordered/Ordered Phases in an Extended Potts Model. Journal of Statistical Physics 99, 1169–1206 (2000). https://doi.org/10.1023/A:1018680520737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018680520737

Navigation