Skip to main content
Log in

Cassie's Law and Concavity of Wall Tension with Respect to Disorder

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For the semiinfinite Ising model with quenched boundary disorder, we prove concavity inequalities for the difference of wall tensions associated with the minus and plus phases. These inequalities generalize phenomenological equalitiesknown as Cassie's law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. A. B. D. Cassie, Contact angles, Discuss. Faraday Soc. 3:11–16 (1948); Contact angles and the absorption of liquids, in Surface Phenomena Chem. Biol., Danielli, Pankhurst, and Riddford, eds. (Pergamon, 1958), pp. 166–171.

    Google Scholar 

  2. D. Urban, K. Topolski, and J. De Coninck, Wall tension and heterogeneous substrates, Phys. Rev. Lett. 76:4388–4391 (1996).

    Google Scholar 

  3. D. B. Abraham, in Phase Transition and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, 1986), Vol. 10.

  4. J. L. Lebowitz, G.H.S. and other inequalities, Commun. Math. Phys.35:87–92 (1974).

    Google Scholar 

  5. F. Dunlop, Correlation inequalities for multicomponent rotators, Commun. Math. Phys. 49:247–256 (1976).

    Google Scholar 

  6. G. S. Sylvester, Inequalities for continuous-spin Ising ferromagnets, J. Stat. Phys. 15:327–341 (1976).

    Google Scholar 

  7. A. Messager and S. Miracle-Sole, Correlation functions and boundary conditions in the Ising ferromagnet, J. Stat. Phys. 17:245–262 (1977).

    Google Scholar 

  8. D. B. Abraham, Phys. Rev. Lett. 44:1165 (1980).

    Google Scholar 

  9. J. Fröhlich and C. E. Pfister, The wetting and layering transitions in the half-infinite Ising model, Europhys. Lett. 3:845–852 (1987).

    Google Scholar 

  10. J. Fröhlich and C. E. Pfister, Semi-infinite Ising model I. Thermodynamic functions and phase diagram in absence of magnetic field, Commun. Math. Phys. 109:493–523 (1987); II. The wetting and layering transitions, Commun. Math. Phys. 112:51–74 (1987).

    Google Scholar 

  11. L. Breiman, Probability(Addison-Wesley, Reading, 1968).

  12. T. M. Liggett, Interacting Particle Systems(Springer, New York, 1985).

    Google Scholar 

  13. R. Holley, Remarks on the FKG inequalities, Commun. Math. Phys. 36:227–231 (1974).

    Google Scholar 

  14. P. Billingsley, Convergence of Probability Measures(John Wiley, New York, 1968).

    Google Scholar 

  15. C. E. Pfister and O. Penrose, Analyticity properties of the surface free energy of the Ising model, Commun. Math. Phys. 115:691–699 (1988).

    Google Scholar 

  16. C. Borgs, J. De Coninck, and R. Kotecký, An equilibrium lattice model of wetting on rough substrates, J. Stat. Phys.94:299–320 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunlop, F., Topolski, K. Cassie's Law and Concavity of Wall Tension with Respect to Disorder. Journal of Statistical Physics 98, 1115–1134 (2000). https://doi.org/10.1023/A:1018663611669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018663611669

Navigation