Skip to main content
Log in

Asymptotic Behavior for the Liouville Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new proof of the diffusion approximation for ordinary differential equations is given. It is based on an asymptotic expansion of the solution of the corresponding Liouville partial differential equations. In contrast to previous results obtained for the suspension under Holderian mappings of subshift of finite type or Fourier analysis techniques, our proof relies only on symbolic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. V. Anosov, Averaging in systems of ODEs with rapidly oscillating solutions, Izv. Akad. Nauk. SSSR 24:721–742 (1960) (untranslated).

    Google Scholar 

  2. V. I. Arnold, Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance in the course of their evolution, Dokl. Akad. Nauk. 161(1):331–334 (1965) [English translation: Soviet Math. Doklady 6(2):581-585 (1965)].

    Google Scholar 

  3. P. Arnoux, frLe Codage du Flot Géodésique sur la Surface Modulaire, L'enseignement Mathématique 40:29–48 (1994).

    Google Scholar 

  4. C. Bardos, J.-F. Colonna, and F. Golse, Diffusion approximation and hyperbolic automorphisms of torus, Physica D; Nonlinear Phenomene 104(1):32–60 (1997).

    Google Scholar 

  5. R. Dautray, Méthodes Probabilistes pour les Équations de la Physique (Masson, 1989).

  6. J.-P. Conze and S. Le Borgne, Méthode de martingales et flot géodésique sur une surface de courbure négative, prépublication 99-16 de IRMAR (Universite- de Rennes).

  7. C. Dogbé, Examples of approximation by diffusion for kinetic equations, Ph.D. thesis (Univ. Paris VII, 1998).

  8. H. Scott Dumas and F. Golse, The averaging method for pertubation of mixing flows, Ergod. Th. Dynam. Sys. 17, Part 6 (1997).

    Google Scholar 

  9. Y. Guivarc'h and Y. Le Jan, Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions, Ann. Sc. Ec. Norm. Sup. 26:23–50 (1993).

    Google Scholar 

  10. Y. Katznelson, Ergodic automorphisms of T n are Bernoulli shifts, Israel J. of Math. 10:186–195 (1971).

    Google Scholar 

  11. R. Kuzmin, A problem of Gauss, Dokl. Akad. Nauk SSSR A 375-380 (1928); in Atti del Congresso Intern. dei Matematici (Bologna) 6:83-89 (1928).

  12. D. Mayer, Ergodic theory, Symbolic Dynamics and Hyperbolic Spaces (Oxford Sc. Pub, 1991).

  13. V. B. Minasjan, Some results of Gibbs local-equilibrium distributions, Dokl. Akad. Nauk SSSR 242(5):1004–1007 (1978) [in Russian].

    Google Scholar 

  14. C. Series. Symbolic dynamics for geodesic flows, Acta Math. 146:103–128 (1981).

    Google Scholar 

  15. M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math. 16:181–197 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogbé, C. Asymptotic Behavior for the Liouville Equations. Journal of Statistical Physics 99, 873–902 (2000). https://doi.org/10.1023/A:1018647613468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018647613468

Navigation