Skip to main content
Log in

Kinetic Theory of Area-Preserving Maps. Application to the Standard Map in the Diffusive Regime

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The evolution of the distribution function of a dynamical system governed by a general two-dimensional area-preserving iterative map is studied by the methods of nonequilibrium statistical mechanics. A closed, non-Markovian master equation determines the angle-averaged distribution function (the “density profile”). The complementary, angle-dependent part (“the fluctuations”) is expressed as a non-Markovian functional of the density profile. Whenever there exist two widely separated intrinsic time scales, the master equation can be markovianized, yielding an asymptotic kinetic equation. The general theory is applied to the standard map in the diffusive regime, i.e., for large stochasticity parameter and large scale length. The non-Markovian master equation can be written and solved analytically in this approximation. The two characteristic time scales are exhibited. This permits the thorough study of the evolution of the density profile, its tendency toward the Markovian approximation, and eventually toward a diffusive Gaussian packet. The evolution of the fluctuations is also described in detail. The various relaxation processes are governed asymptotically by a single diffusion coefficient, which is calculated analytically. This model appears as a testing bench for the study of kinetic equations. The various previous approaches to this problem are reviewed and critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. Balescu, Phys. Rev. E 58:951 (1998).

    Google Scholar 

  2. B. V. Chirikov, Phys. Reports 52:265 (1979).

    Google Scholar 

  3. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion(Springer, New York, 1983).

    Google Scholar 

  4. L. E. Reichl, The Transition to Chaos(Springer, New York, 1992).

    Google Scholar 

  5. A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems(Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  6. R. Balescu, Statistical Dynamics: Matter out of Equilibrium(Imperial College Press, London, 1997).

    Google Scholar 

  7. G. M. Zaslavsky and B. V. Chirikov, Usp. Fiz. Nauk 105:3 (1971).

    Google Scholar 

  8. A. B. Rechester and R. B. White, Phys. Rev. Lett. 44:1586 (1980).

    Google Scholar 

  9. A. B. Rechester, M. N. Rosenbluth, and R. W. White, Phys. Rev. A 23:2994 (1981).

    Google Scholar 

  10. R. H. Cohen and G. Rowlands, Phys. Fluids 24:2295 (1981).

    Google Scholar 

  11. J. D. Meiss, J. R. Cary, C. Grebogi, J. D. Crawford, A. N. Kaufman, and H. D. J. Abarbanel, Physica D 6:375 (1983).

    Google Scholar 

  12. M. A. Lieberman and A. J. Lichtenberg, Plasma Phys. 15:125 (1973).

    Google Scholar 

  13. H. D. J. Abarbanel and J. D. Crawford, Phys. Lett. A 82:378 (1981).

    Google Scholar 

  14. H. H. Hasegawa and W. C. Saphir, in: Aspects of Nonlinear Dynamics, I. Antoniou and F. Lambert, eds. (Springer, Berlin, 1991).

    Google Scholar 

  15. O. F. Bandtlow and P. V. Coveney, J. Phys. A: Math. Gen. 27:7939 (1994).

    Google Scholar 

  16. I. Prigogine and P. Résibois, Physica 27:629 (1961).

    Google Scholar 

  17. R. Zwanzig, in Lectures in Theoretical Physics, Vol. 3 (Wiley-Interscience, New York, 1961).

    Google Scholar 

  18. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics(Wiley-Interscience, New York, 1975).

    Google Scholar 

  19. I. Prigogine, Nonequilibrium Statistical Mechanics(Wiley-Interscience, New York, 1963).

    Google Scholar 

  20. R. Balescu, Statistical Mechanics of Charged Particles(Wiley-Interscience, New York, 1963).

    Google Scholar 

  21. H. H. Hasegawa and W. C. Saphir, Phys. Rev. A46:7401 (1992).

    Google Scholar 

  22. G. Nicolis, Introduction to Nonlinear Science(Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  23. N. G. van Kampen, Stochastic Processes in Physics and Chemistry(North Holland, Amsterdam, 1981).

  24. C. W. Gardiner, Handbook of Stochastic Processes, 2nd edition (Springer, Berlin, 1997).

    Google Scholar 

  25. R. Tabet, D. Saifaoui, A. Dezairi, and A. Raouak, Eur. Phys. J. AP 4:329 (1998).

    Google Scholar 

  26. S. Benkadda, S. Kassibrakis, R. B. White, and G. M. Zaslavsky, Phys. Rev. E 55:4909 (1997).

    Google Scholar 

  27. R. B. White, S. Benkadda, S. Kassibrakis, and G. M. Zaslavsky, Chaos 8:757 (1998).

    Google Scholar 

  28. I. Dana and S. Fishman, Physica D 17:63 (1985).

    Google Scholar 

  29. I. Dana, Physica D 39:205 (1989).

    Google Scholar 

  30. C. F. F. Karney, A. B. Rechester, and R. B. White, Physica D 4:425 (1982).

    Google Scholar 

  31. C. F. F. Karney, Physica D 8:360 (1983).

    Google Scholar 

  32. J. D. Meiss and E. Ott, Phys. Rev. Lett. 55:2741 (1985); Physica D 20:387 (1986).

    Google Scholar 

  33. Y. H. Ichikawa, T. Kamimura, and T. Hatori, Physica D 29:247 (1987).

    Google Scholar 

  34. T. Horita, H. Hata, R. Ishizaki, and H. Mori, Prog. Theor. Phys. 83:1065 (1990).

    Google Scholar 

  35. R. Ishizaki, T. Horita, T. Kobayashi, and H. Mori, Prog. Theor. Phys. 85:1013 (1991).

    Google Scholar 

  36. J. Klafter, G. Zumofen, and M. F. Shlesinger, Fractals 1:389 (1993).

    Google Scholar 

  37. G. Zumofen and J. Klafter, Europhys. Letters 25:565 (1994).

    Google Scholar 

  38. H. D. J. Abarbanel, Physica D 4:89 (1981).

    Google Scholar 

  39. H. H. Hasegawa and D. J. Driebe, Phys. Rev. E 50:1781 (1994).

    Google Scholar 

  40. I. Prigogine, C. George, F. Henin, and L. Rosenfeld, Chemica Scripta 4:5 (1973).

    Google Scholar 

  41. B. Misra, I. Prigogine, and M. Courbage, Physica A 98:1 (1979).

    Google Scholar 

  42. T. Petrosky and I. Prigogine, Chaos, Solitons Fractals 7:441 (1995).

    Google Scholar 

  43. H. H. Hasegawa and W. C. Saphir, Phys. Lett. A 161:471, 476 (1992).

    Google Scholar 

  44. H. H. Hasegawa and W. C. Saphir, Phys. Lett. A 171:317 (1992).

    Google Scholar 

  45. D. J. Driebe, Fully Chaotic Maps and Broken Time Symmetry(Kluwer, Dordrecht, 1999).

    Google Scholar 

  46. D. Ruelle, Phys. Rev. Lett. 56:405 (1986).

    Google Scholar 

  47. P. Gaspard, Chaos, Scattering and Statistical Mechanics(Cambridge University Press, 1998).

  48. N. G. van Kampen, Physica 21:949 (1955); 23:641 (1957).

    Google Scholar 

  49. K. M. Case, Ann. Phys. 7:349 (1959).

    Google Scholar 

  50. T. Y. Petrosky, in: Statistical Physics and Chaos in Fusion Plasmas, C. W. Horton, Jr. and L. E. Reichl, eds. (Wiley-Interscience, New York, 1984).

    Google Scholar 

  51. P. V. Coveney and A. K. Evans, J. Stat. Phys. 77:229 (1994).

    Google Scholar 

  52. A. K. Evans and P. V. Coveney, Proc. Roy. Soc. London 448:293 (1995).

    Google Scholar 

  53. A. K. Evans and P. V. Coveney, J. Phys. A: Math. Gen. 31:5887 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balescu, R. Kinetic Theory of Area-Preserving Maps. Application to the Standard Map in the Diffusive Regime. Journal of Statistical Physics 98, 1169–1234 (2000). https://doi.org/10.1023/A:1018619829416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018619829416

Navigation