Skip to main content
Log in

Shell Analysis and Effective Disorder in a 2D Froth

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The static and evolutionary properties of two-dimensional cellular structures, or froths, are discussed in the light of recent work on structuring of the froth into concentric shells. Of interest is the dual role of a topological dislocation (“defect”) in an otherwise uniform froth, considered both as a source of disorder and also as a source generating a shell-structured froth. We present simulations on an initially uniform hexagonal froth. A defect is introduced by forcing either a T1 or T2 process in the stable structure, after which the froth is allowed to evolve according to von Neumann's law. In the first case, topological inclusions are found in the first few layers early in the evolution. In the second case, no inclusions appear over the entire evolutionary period. The growing disorder (as measured by the second moment of the side distribution, μ 2) is isotropic. For the special case of a T2-formed froth in a uniform network, the SSI structure is retained with μ 2≠0 only for the zeroth, first, and second layers. The ratio between topological perimeter and radius of the shells is close to 6, the value for a hexagonal froth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Abdelkader and J. C. Earnshaw, Phys. Rev. E 56:3251 (1997).

    Google Scholar 

  2. D. A. Aboav, Metallography 3:383 (1970).

    Google Scholar 

  3. T. Aste, Foams and Emulsions, J. F. Sadoc and N. Rivier, eds. (Kluwer, 1997).

  4. T. Aste, D. Boose, and N. Rivier, Phys. Rev. E 53:6181 (1996a).

    Google Scholar 

  5. T. Aste, K. Y. Szeto, and W. Y. Tam, Phys. Rev. E 54:5482 (1996b).

    Google Scholar 

  6. T. Aste and N. Rivier, in Shape Modelling and Applications (IEEE Computer Society Press, 1997), pp. 2–9.

  7. B. N. Boots, Metallography 15:53 (1982).

    Google Scholar 

  8. B. Dubertret, N. Rivier, and M. A. Peshkin, J. Phys. A: Math. Gen. 31:879 (1998).

    Google Scholar 

  9. J. A. Glazier, S. P. Gross, and J. Stavans, Phys. Rev. A 36:306 (1987).

    Google Scholar 

  10. Y. Jiang, J. C. M. Mombach, and J. A. Glazier, Phys. Rev. E 52:R3333 (1995).

    Google Scholar 

  11. B. Levitan, Phys. Rev. Lett. 72:4057 (1994).

    Google Scholar 

  12. B. Levitan, E. Slepyan, O. Krichevsky, J. Stavans, and E. Domany, Phys. Rev. Lett. 73:756 (1994).

    Google Scholar 

  13. B. Levitan and E. Domany, Phys. Rev. E 54:2766 (1996).

    Google Scholar 

  14. F. T. Lewis, Anat. Rec. 38:341 (1928).

    Google Scholar 

  15. H. M. Ohlenbusch, T. Aste, B. Dubertret, and N. Rivier, Eur. Phys. J. B 2:211 (1998).

    Google Scholar 

  16. M. A. Peshkin, K. J. Strandburg, and N. Rivier, Phys. Rev. Lett. 67:1803 (1991).

    Google Scholar 

  17. N. Rivier, Foams and Emulsions, J. F. Sadoc and N. Rivier, eds. (Kluwer, 1997).

  18. N. Rivier and T. Aste, Phil. Trans. Roy. Soc. A 354:2055 (1996).

    Google Scholar 

  19. H. J. Ruskin and Y. Feng, J. Phys.: Condens. Matter 7:L553 (1995).

    Google Scholar 

  20. H. J. Ruskin and Y. Feng, Physica A 230:455 (1996).

    Google Scholar 

  21. H. J. Ruskin and Y. Feng, Physica A 247:153 (1997).

    Google Scholar 

  22. J. Stavans, Rep. Prog. Phys. 56(6):733 (1993).

    Google Scholar 

  23. K. Y. Szeto and W. Y. Tam, Phys. Rev. E 53:4213 (1996).

    Google Scholar 

  24. U. Thiele, M. Mertig, W. Pompe, and H. Wendrock, Foams and Emulsions, J. F. Sadoc and N. Rivier, eds. (Kluwer, 1997).

  25. J. von Neumann, Metal Interfaces, Amer. Soc. for Metals, Vol. 108 (Cleveland, OH).

  26. D. Weaire, Metallography 7:157 (1974).

    Google Scholar 

  27. D. Weaire and J. P. Kermode, Phil. Mag. B 48:245 (1983).

    Google Scholar 

  28. D. Weaire and H. Lei, Phil. Mag. Lett. 62:427 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Ruskin, H.J. Shell Analysis and Effective Disorder in a 2D Froth. Journal of Statistical Physics 99, 263–272 (2000). https://doi.org/10.1023/A:1018600824582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018600824582

Navigation