Skip to main content
Log in

Knotted Zeros in the Quantum States of Hydrogen

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Complex superpositions of degenerate hydrogen wavefunctions for the n th energy level can possess zero lines (phase singularities) in the form of knots and links. A recipe is given for constructing any torus knot. The simplest cases are constructed explicitly: the elementary link, requiring n≥6, and the trefoil knot, requiring n≥7. The knots are threaded by multistranded twisted chains of zeros. Some speculations about knots in general complex quantum energy eigenfunctions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Barrow, The Book of Nothing (Jonathan Cape, London, 2000).

    Google Scholar 

  2. R. Kaplan, The Nothing that Is: A Natural History of Zero (University Press, Oxford, 1999).

    Google Scholar 

  3. M. C. Gutzwiller, “Stochastic behavior in quantum scattering,” Physica 7D, 341–355 (1983).

    Google Scholar 

  4. M. V. Berry and J. P. Keating, “The Riemann zeros and eigenvalue asymptotics,” SIAM Review 41, 236–266 (1999).

    Google Scholar 

  5. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. Roy. Soc. Lond. A336, 165–90 (1974).

    Google Scholar 

  6. M. V. Berry, “Singularities in waves and rays,” in Les Houches Lecture Series Session 35, R. Balian, M. Kléman, and J.-P. Poirier, eds. (North-Holland, Amsterdam, 1981), pp. 453–543.

  7. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics, Bristol, 1999).

    Google Scholar 

  8. J. O. Hirschfelder, A. ristoph, and W. E. Palke, “Quantum mechanical streamlines. 1. Square potential barrier,” J. Chem. Phys. 61, 5435–5455 (1974).

    Google Scholar 

  9. J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. III. Idealized reactive atom_diatomic molecule collision,” J. Chem. Phys. 64, 760–785 (1976).

    Google Scholar 

  10. J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers,” J. Chem. Phys. 65, 470–486 (1976).

    Google Scholar 

  11. G. P. Karman, M. W. Beijersbergen, A. van Duijl, and J. P. Woerdman, “Creation and annihilation of phase singularities in a focal field,” Optics Lett. 22, 1503–1505 (1997).

    Google Scholar 

  12. G. P. Karman, M. W. Beijersbergen, A. van Duijl, D. Bouwmeester, and J. P. Woerdman, “Airy pattern reorganization and sub-wavelength structure in a focus,” J. Opt. Soc. Amer. A 15, 884–899 (1997).

    Google Scholar 

  13. M. S. Soskin, ed., Singular Optics (Proceedings of SPIE, Vol. 3487) (1998).

  14. M. Vasnetsov and K. Staliunas, eds., Optical Vortices (Nova Science, Commack, New York, 1999).

    Google Scholar 

  15. M. V. Berry, “Much ado about nothing: optical dislocation lines (phase singularities, zeros, vortices,...),” in Singular Optics (Proceedings of SPIE, Vol. 3487), M. S. Soskin, ed. (1998), pp. 1–5.

  16. I. Freund, “Optical vortex trajectories,” Optics Comm. 181, 19–33 (2000).

    Google Scholar 

  17. M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. Roy. Soc. Lond., in press (2001).

  18. M. V. Berry and M. Wilkinson, “Diabolical points in the spectra of triangles,” Proc. Roy. Soc. Lond. A 392, 15–43 (1984).

    Google Scholar 

  19. M. V. Berry, “Regular and irregular semiclassical wave functions,” J. Phys. A 10, 2083–91 (1977).

    Google Scholar 

  20. M. V. Berry and M. R. Dennis, “Phase singularities in isotropic random waves,” Proc. Roy. Soc. Lond. A 456, 2059–2079 (2000).

    Google Scholar 

  21. P. Cromwell, E. Beltrami, and M. Rampicini, “The Borromean rings,” Math. Intelligencer 20, 53–62 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, M. Knotted Zeros in the Quantum States of Hydrogen. Foundations of Physics 31, 659–667 (2001). https://doi.org/10.1023/A:1017521126923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017521126923

Keywords

Navigation