, Volume 131, Issue 3, pp 371-388

First online:

Is Hintikka's Logic First-Order?

  • Matti EklundAffiliated withHugvísindastofnun, University of Iceland
  • , Daniel KolakAffiliated withDepartment of Philosophy, William Paterson University

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Jaakko Hintikka has argued that ordinary first-order logic should be replaced byindependence-friendly first-order logic, where essentially branching quantificationcan be represented. One recurring criticism of Hintikka has been that Hintikka'ssupposedly new logic is equivalent to a system of second-order logic, and henceis neither novel nor first-order. A standard reply to this criticism by Hintikka andhis defenders has been to show that given game-theoretic semantics, Hintikka'sbranching quantifiers receive the exact same treatment as the regular first-orderones. We develop a different reply, based around considerations concerning thenature of logic. In particular, we argue that Hintikka's logic is the logic that bestrepresents the language fragment standard first-order logic is meantto represent. Therefore it earns its keep, and is also properly regarded as first-order.