Skip to main content
Log in

Multi-Fractal Formalism for Quasi-Self-Similar Functions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The study of multi-fractal functions has proved important in several domains of physics. Some physical phenomena such as fully developed turbulence or diffusion limited aggregates seem to exhibit some sort of self-similarity. The validity of the multi-fractal formalism has been proved to be valid for self-similar functions. But, multi-fractals encountered in physics or image processing are not exactly self-similar. For this reason, we extend the validity of the multi-fractal formalism for a class of some non-self-similar functions. Our functions are written as the superposition of “similar” structures at different scales, reminiscent of some possible modelization of turbulence or cascade models. Their expressions look also like wavelet decompositions. For the computation of their spectrum of singularities, it is unknown how to construct Gibbs measures. However, it suffices to use measures constructed according the Frostman's method. Besides, we compute the box dimension of the graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Lévy Véhel and R. Riedi, Fractional Brownian Motion and Data Traffic Modeling: The Other End of the Spectrum. Fractals in Engineering, J. Lévy Véhel, E. Lutton, and C. Tricot, eds. (Springer Verlag, 1997).

  2. M. Holschneider and Ph. Tchamitchan, Régularité locale de la fonction “non-differentiable” de Riemann, Lecture Notes in Math. 1438:102-124 (1990).

    Google Scholar 

  3. S. Jaffard, Exposants de Hölder en des points donnés et coefficients d'ondelettes, C. R. Acad. Sci. Paris Sér. I Math. 308:79-81 (1989).

    Google Scholar 

  4. S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Publ. Mat. 35:155-168 (1991).

    Google Scholar 

  5. J. P. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot (1979).

  6. B. Mandelbrot, Intermittent turbulence in selfsimilar cascades: Divergence of high moments and dimension of the carrier, J. Fluid Mech. 62:331 (1974).

    Google Scholar 

  7. B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire, C. R. Acad. Sci. Paris, Sér. I Math. 278:289-292 (1974).

    Google Scholar 

  8. J. Barral, Moments, continuité et analyse multifractale des martingales de Mandelbrot, Probab. Theory Related Fields 113:535-570 (1999).

    Google Scholar 

  9. Y. Gagne, Etude expérimentale de l'intermittence et des singularités dans le plan complexe en turbulence pleinement développée, Thèse de l'Université de Grenoble (1987).

  10. A. Arneodo, E. Bacry, and J. F. Muzy, Singularity spectrum of fractal signals from wavelet analysis: Exact results, J. Statist. Phys. 70:635-674 (1993).

    Google Scholar 

  11. U. Frisch and G. Parisi, Fully developped turbulence and intermittency, in Proc. Internat. School Phys. Enrico Fermi (North Holland, 1985), pp. 84-88.

  12. S. Jaffard, Multifractal formalism for functions. Part 1: Results valid for all functions and Part 2: Selfsimilar functions, SIAM J. Math. Anal. 28:944-998 (1997).

    Google Scholar 

  13. Y. Meyer, Ondelettes et opérateurs I: Ondelettes (Hermann, Paris, 1990).

    Google Scholar 

  14. M. Ben Slimane, Formalisme Multifractal pour quelques généralisations des fonctions autosimilaires, C. R. Acad. Sci. Paris Sér. I Math. 324:981-986 (1997).

    Google Scholar 

  15. M. Ben Slimane, Multifractal formalism and anisotropic selfsimilar functions, Math. Proc. Cambridge. Philos. Soc. 124:329-363 (1998).

    Google Scholar 

  16. M. Ben Slimane, Multifractal formalism for selfsimilar functions expanded in singular basis, Appl. Comput. Harmon. Anal. 11:387-419 (2001).

    Google Scholar 

  17. M. Barnsley and A. Sloan, A better way to compress images, Byte Magazine:215-223 (1988).

  18. C. Meneveau and K. Srenivanasan, Phys. Rev. Lett. 59:1424 (1987).

    Google Scholar 

  19. A. Arneodo, A. Argoul, E. Bacry, J. F. Muzy, and M. Tabard, Golden mean arithmetic in the fractal branching of diffusion-limitted aggreagates, Technical Report, Paul-Pascal Research Center, France (1991).

    Google Scholar 

  20. I. Daubechies and J. C. Lagarias, On the thermodynamic formalism for functions, Rev. Math. Phys. 6:1033-1070 (1994).

    Google Scholar 

  21. I. Daubechies, Private communication.

  22. M. Ben Slimane, Multifractal formalism for selfsimilar functions under the action of nonlinear dynamical systems, Constr. Approx. J. 15:209-240 (1999).

    Google Scholar 

  23. P. Collet, J. Lebowitz, and A. Porzio, The dimension specrum of some dynamical systems, J. Statist. Phys. 47:609-644 (1987).

    Google Scholar 

  24. L. Olsen, A multifractal formalism, Adv. Math. 116:82-196 (1995).

    Google Scholar 

  25. D. A. Rand, The singularity spectrum f(a) for cookie-cutters, Ergodic Theory Dynam. Systems 9:527-541 (1989).

    Google Scholar 

  26. J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30:713-747 (1981).

    Google Scholar 

  27. G. Brown, G. Michon, and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66:775-790 (1992).

    Google Scholar 

  28. F. Ben Nasr, Multifractal analysis of measures, C. R. Acad. Sci. Paris Sér. I Math. 319:807-810 (1994).

    Google Scholar 

  29. F. Ben Nasr, I. Bhouri, and Y. Heurtaux, A necessary condition and sufficient condition for a valid multifractal formalism, Prépublication d'Orsay, No. 58. To appear in Adv. Math.

  30. Y. Meyer, Wavelets and Operators (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  31. J. Peyrière, Multifractal measures, Probabilistic and Stochastic Methods in Analysis, with Applications, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 372, pp. 175-186 (Kluwer Acad. Publ., Dordrecht, 1992).

    Google Scholar 

  32. P. Billingsly, Hausdorff dimension in probability theory, Illinois J. Math. 4:187-209 (1960).

    Google Scholar 

  33. S. Jaffard, On box dimension of graphs, C. R. Acad. Sci. Paris, Sér. I Math. 326:555-560 (1998).

    Google Scholar 

  34. S. Jaffard, On lacunary wavelet series, Ann. Appl. Probab. 10:313-329 (2000).

    Google Scholar 

  35. A. Arneodo, E. Bacry, S. Jaffard, and J. F. Muzy, Singularity spectrum of multifractal functions involving oscillating singularities, J. Fourier Anal. Appl. 4:159-174 (1998).

    Google Scholar 

  36. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, Toronto, 1990).

    Google Scholar 

  37. A. Arneodo, E. Bacry, and J. F. Muzy, Random cascades on wavelet dyadic trees, J. Math. Phys. 39:4142-4164 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aouidi, J., Ben Slimane, M. Multi-Fractal Formalism for Quasi-Self-Similar Functions. Journal of Statistical Physics 108, 541–590 (2002). https://doi.org/10.1023/A:1015729908167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015729908167

Navigation