Skip to main content
Log in

Monitoring Density and Temperature in C/C Composites Processing by CVI with Induction Heating

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Carbon/carbon composites are processed by chemical vapor infiltration (CVI) with radio-frequency inductive heating, which leads to inside-out temperature gradients, suitable for the production of homogeneously densified pieces if properly controlled throughout the whole processing. We present here a 2D axisymmetrical case where a comprehensive numerical model is tested against experimental runs. The numerical thermal model takes into account induction heating, radiative, conductive, and convective effects, intermediate regime diffusion and densification reactions in the pores, and the evolution of the porous medium. The results are the time evolution of the temperature, concentration, and composite material density field, as well as the input power necessary to ensure a given maximal temperature in the preform. Experimental data are measurements of the temperature and density fields at various infiltration stages. Comparison between experience and simulation, yielding an useful agreement, shows that porosity becomes trapped inside the preform as densification proceeds, because of the progressive lowering of the temperature gradient steepness. The discrepancies between computations and experimental data rely on the only approximate knowledge of some quantities, principally the reaction kinetics, which are currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Christin, R. Naslain, and C. Bernard, in Proceedings of the 7th International Conference on CVD, T. O. Sedgwick and H. Lydtin, eds. (The Electrochemical Society Proceedings Series, Pennington, NJ, 1979), pp. 499–514.

    Google Scholar 

  2. R. Naslain, J. Y. Rossignol, P. Hagenmuller, F. Christin, L. Héraud, and J. J. Choury, Rev. Chim. Min. 18, 544 (1981).

    Google Scholar 

  3. D. P. Stinton, T. M. Besmann, W. M. Matlin, T. L. Starr, and W. A. Curtain, in Ceramic Matrix Composites—Advanced High-Temperature Structural Materials, R. A. Lowden, M. K. Ferber, J. R. Hellmann, K. K. Chawla, and S. G. DiPietro, eds. (Materials Research Society, Pittsburgh, PA, 1995), pp. 317–324.

    Google Scholar 

  4. D. P. Stinton, R. A. Lowden, and T. M. Besmann, in Chemical Vapor Deposition of Refractory Metals and Ceramics II, T. M. Besmann, B. M. Gallois, and J. W. Warren, eds. (Materials Research Society, Pittsburgh, PA, 1992), pp. 233–237.

    Google Scholar 

  5. M. Jones and T. L. Starr, in Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures- B, G. N. Pfendt, ed. (The American Ceramic Society Westerville, OH, 1995), pp. 829–836.

    Google Scholar 

  6. T. M. Besmann and J. C. McLaughlin, in Proceedings of the 18th Annual Conference on Composites and Advanced Materials- B, K. V. Logan, ed. (The American Ceramic Society, Westerville, OH, 1994), pp. 897–907.

    Google Scholar 

  7. T. L. Starr and A. W. Smith, in Chemical Vapor Deposition of Refractory Metals and Ceramics, T. M. Besmann and B. M. Gallois, eds. (Materials Research Society, Pittsburgh, PA, 1990), pp. 55–60.

    Google Scholar 

  8. N. H. Tai, T. W. Chou, and C. C. M. Ma, J. Amer. Ceram. Soc. 77, 849 (1994).

    Google Scholar 

  9. R. R. Melkote and K. F. Jensen, in Chemical Vapor Deposition of Refractory Metals and Ceramics, T. M. Besmann and B. M. Gallois, eds. (Materials Research Society, Pittsburgh, PA, 1990), pp. 67–72.

    Google Scholar 

  10. D. J. Skamser, H. M. Jennings, and D. L. Johnson, J. Mater. Res. 12, 724 (1997).

    Google Scholar 

  11. M. Kawase, Y. Ikuta, T. Tago, T. Masuda, and K. Hashimoto, Chem. Eng. Sci. 49, 4861 (1994).

    Google Scholar 

  12. D. J. Devlin, R. S. Barbero, and K. N. Siebein, in Chemical Vapor Deposition XIII, M. D. Allendorf, McD. Robinson, and R. K. Ulrich, eds. (The Electrochemical Society, Pennington, NJ, 1996), pp. 571–579.

    Google Scholar 

  13. D. J. Devlin, R. P. Currier, R. S. Barbero, and B. F. Espinoza, in Chemcial Vapor Deposition of Refractory Metals and Ceramics II, T. M. Besmann, B. M. Gallois, and J. W. Warren eds. (Materials Research Society, Pittsburgh, PA, 1992), pp. 245–250.

    Google Scholar 

  14. V. Midha and D. J. Economou, J. Electrochem. Soc. 144, 4062 (1997).

    Google Scholar 

  15. V. Midha and D. J. Economou, J. Electrochem. Soc. 145, 4062 (1998).

    Google Scholar 

  16. I. Golecki, R. C. Morris, and D. Narasimhan, in Chemical Vapor Deposition XIII, M. D. Allendorf, McD. Robinson, and R. K. Ulrich, eds. (The Electrochemical Society, Pennington, NJ, 1996), pp. 547–551.

    Google Scholar 

  17. I. Golecki, R. C. Morris, and D. Narasimhan, in Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures- A, G. N. Pfendt, ed. (The American Ceramic Society, Westerville, OH, 1995), pp. 315–322.

    Google Scholar 

  18. I. Golecki, R. C. Morris, and D. Narasimhan, Appl. Phys. Lett. 66, 2334 (1995).

    Google Scholar 

  19. I. Golecki, in Proceedings of the 21st Annual Conference and Exposition on Composites, Advanced Ceramics, Materials and Structures- B, J. P. Singh, ed. (The American Ceramic Society, Westerville, OH, 1997), pp. 721–730.

    Google Scholar 

  20. I. Golecki, R. C. Morris, D. Narasimhan, and N. Clements, in Advanced Synthesis and Processing of Composites and Advanced Ceramics II, K. V. Logan, Z. A. Munir, and R. M. Spriggs, eds. (The American ceramic Society, Westerville, OH, 1996), pp. 135–142.

    Google Scholar 

  21. S. Bertrand, J.-F. Lavaud, R. El-Hadi, G. L. Vignoles, and R. Pailler, J. Eur. Ceram. Soc. 18, 857 (1998).

    Google Scholar 

  22. D. Gupta and J. W. Evans, J. Mater. Res. 6, 810 (1991).

    Google Scholar 

  23. J. I. Morell, D. J. Economou, and N. R. Amundson, J. Electrochem. Soc. 139, 328 (1992).

    Google Scholar 

  24. Flux-Expert finite element software package, distributed by Simulog, France.

  25. A. Herpin, J. Rappeneau, M. Yvars, and R. Setton, Conductibilité Thermique du graphite et des carbones (Masson, Paris, 1965).

    Google Scholar 

  26. R. W. Powell and F. M. Schoffield, Proc. Phys. Soc. London 51, 153 (1939).

    Google Scholar 

  27. M. M. Tomadakis and S. V. Sotirchos, J. Chem. Phys. 98, 616 (1993).

    Google Scholar 

  28. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids (McGraw Hill, New York, 1987).

    Google Scholar 

  29. B. Métais and E. R. G. Eckert, J. Heat Transfer 86, 295 (1964).

    Google Scholar 

  30. M. K. King, J. Mater. Res. 9, 74 (1994).

    Google Scholar 

  31. J. I. Morell, D. J. Economou, and N. R. Amundson, J. Mater. Res. 7, 2447 (1992).

    Google Scholar 

  32. J. Y. Ofori and S. V. Sotirchos, J. Mater. Res. 11, 2541 (1996).

    Google Scholar 

  33. J. I. Morell, D. J. Economou, and N. R. Amundson, J. Mater. Res. 8, 1057 (1993).

    Google Scholar 

  34. D. Evans and J. W. Evans, J. Amer. Ceram. Soc. 76, 1924 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard L. Vignoles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leutard, D., Vignoles, G.L., Lamouroux, F. et al. Monitoring Density and Temperature in C/C Composites Processing by CVI with Induction Heating. Journal of Materials Synthesis and Processing 9, 259–273 (2001). https://doi.org/10.1023/A:1015251518333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015251518333

Navigation