Skip to main content
Log in

Finite Element Analysis of CoSi2 Nanocrystals on Si(001)

  • Published:
Interface Science

Abstract

In this work we present a finite element analysis of pyramidal and hut-shaped CoSi2 nanocrystals reactively deposited onto Si(001) substrates. These dots have been observed by us, as well as by other groups. Our analyses have yielded four major conclusions: (1) Elastic relaxation of CoSi2/Si mismatch strain by three-dimensional islands drives their nucleation, rendering flat, two-dimensional, layer energetically unfavourable. (2) The effect of the nanocrystal surface and interface energies for the observed vertical aspect ratios is negligible at small nanocrystal volumes. (3) Pyramids and huts with identical vertical aspect ratios are energetically degenerate. (4) Nanocrystal growth is only energetically favourable if accompanied by an increase in vertical aspect ratio. Most of these conclusions are consistent with those found in compressively strained layers, such as Si1−x Ge x layers on Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.P. Murarka, Silicides for VLSI Applications (Academic Press, New York, 1983).

    Google Scholar 

  2. V. Scheuch, B. Voigtländer, and H.P. Bonzel, Surf. Sci. 372, 71 (1997).

    Google Scholar 

  3. I. Goldfarb and G.A.D. Briggs, Phys. Rev. B 60, 4800 (1999).

    Google Scholar 

  4. J. Tersoff and F.K. LeGoues, Phys. Rev. Lett. 72, 3570 (1993).

    Google Scholar 

  5. J. Tersoff and R.M. Tromp, Phys. Rev. Lett. 70, 2782 (1993).

    Google Scholar 

  6. S.H. Brongersma, M.R. Castell, D.D. Perovic, and M. Zinke-Allmang, Phys. Rev. Lett. 80, 3795 (1998).

    Google Scholar 

  7. J. Tersoff, Phys. Rev. Lett. 79, 4934 (1997).

    Google Scholar 

  8. D.A. Faux and G.S. Pearson, Phys. Rev. B 62, R4798 (2000).

    Google Scholar 

  9. S. Christiansen, M. Albrecht, H.P. Strunk, and H.J. Maier, Appl. Phys. Lett. 64, 3617 (1994).

    Google Scholar 

  10. S. Christiansen, M. Albrecht, H.P. Strunk, P.O. Hansson, and E. Bauser, Appl. Phys. Lett. 66, 574 (1995).

    Google Scholar 

  11. D.J. Eaglesham and R. Hull, Mat. Sci. Eng. B 30, 197 (1995).

    Google Scholar 

  12. H.P. Strunk, M. Albrecht, S. Christiansen, and W. Dorsch, Inst. Phys. Conf. Ser. No. 157, 323 (1997).

    Google Scholar 

  13. K. Tillman, B. Rahmati, H. Trinkaus, W. Jäger, A. Hartmann, R. Loo, L. Vescan, and K. Urban, Inst. Phys. Conf. Ser. No. 157, 343 (1997).

    Google Scholar 

  14. H.T. Johnson and L.B. Freund, J. Appl. Phys. 81, 6081 (1997).

    Google Scholar 

  15. Th. Wiebach, M. Schmidbauer, M. Hanke, H. Raidt, R. Kohler, and H. Wawra, Phys. Rev. B 61, 5571 (2000).

    Google Scholar 

  16. I. Goldfarb and G.A.D. Briggs, Surf. Sci. 454-456, 837 (2000).

    Google Scholar 

  17. I. Goldfarb and G.A.D. Briggs, J. Mater. Res. 16, 744 (2001).

    Google Scholar 

  18. R. Stalder, W. Wolf, R. Podloucky, G. Kresse, J. Furthmüller, and J. Hafner, Phys. Rev. B 56, 1729 (1996).

    Google Scholar 

  19. I. Goldfarb and G.A.D. Briggs, Recent Res. Devel. In Mat. Sci. 1, 191 (1998).

    Google Scholar 

  20. D.J. Bottomley and P. Fons, J. Cryst. Growth 160, 407 (1996).

    Google Scholar 

  21. K.J. Bathe, ADINAAutomatic Dynamic, Incremental Nonlinear Analysis System, Version 7.4 (2000), Adina Engineering, Inc. USA.

  22. B.A. Boley and J.H. Weiner, Theory of Thermal Stresses (Wiley, New York, 1960), p. 263.

    Google Scholar 

  23. C.W.T. Bulle-Lieuwma, A.F. DE Jong, and D.E.W. Vandenhoudt, Phil. Mag. A 64, 255 (1991).

    Google Scholar 

  24. V. Buschmann, L. Fedina, M. Rodewald, and G. Van Tendeloo, Phil. Mag. Lett. 77, 147 (1998).

    Google Scholar 

  25. C.W.T. Bulle-Lieuwma, A.H. van Ommen, J. Hornstra, and C.N.A.M. Aussems, J. Appl. Phys. 71, 2211 (1992).

    Google Scholar 

  26. D.P. Adams, S.M. Yalisove, and D.J. Eaglesham, J. Appl. Phys. 76, 5190 (1994).

    Google Scholar 

  27. R. Stalder, R. Podloucky, G. Kresse, and J. Hafner, Phys. Rev. B 57, 4088 (1998).

    Google Scholar 

  28. R. Stalder, D. Vogtenhuber, and R. Podloucky, Phys. Rev. B 60, 17112 (1999).

    Google Scholar 

  29. R. Stalder and R. Podloucky, Phys. Rev. B 62, 2209 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Goldfarb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfarb, I., Banks-Sills, L., Eliasi, R. et al. Finite Element Analysis of CoSi2 Nanocrystals on Si(001). Interface Science 10, 75–81 (2002). https://doi.org/10.1023/A:1015141330884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015141330884

Navigation