Skip to main content
Log in

A Comparison of Some Metabolic Effects of N-Methylaspartate Stereoisomers, Glutamate and Depolarization: A Multinuclear MRS Study

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Exposure of guinea pig brain slices to low concentrations (10 μM) of NMDA caused decreases in PCr and ATP within 30 min, with a slower decrease in NAA and increase in lactate, both detectable after 1 h. Exposure to NMDA for over 1 h or at higher concentrations caused further increases in lactate and decreases in NAA, with no further change in PCr or ATP. The L-isomer, NMLA, and the racemic mixture, NMDLA, caused similar changes in lactate and NAA, but both produced greater decreases in the energy state than NMDA, similar to those caused by prolonged exposure to glutamate. MK-801 prevented the changes in the energy state caused by NMDA, but not those caused by NMLA or by glutamate. The results are compared to previous studies on depolarization and discussed in terms of the role of the NMDA sub-type of glutamate receptor in the excitotoxic hypothesis of neuronal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Olney, J. W. 1983. Excitotoxins; An Overview, pages 82–96, in Fuxe, K., Roberts, P., and Schwarts, R. (eds). Excitotoxins, London: Macmillan.

    Google Scholar 

  2. Choi, D. W., Weiss, J. H., Koh, J-Y., Christine, C. W., and Kurth, M. C. 1989. Glutamate neurotoxicity, calcium, and zinc. Ann. N. Y. Acad. Sci. 568:219–224.

    Google Scholar 

  3. Choi, D. W. and Hartley, D. M. 1993. Calcium and glutamateinduced cortical neuronal death. In Molecular and Cellular Approaches to the treatment of Neurological Disease. (ed. Waxman, S. G.), New York: Raven Press.

    Google Scholar 

  4. Lipton, S. A. and Rosenberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurological disorders. New England J. Med. 330:613–622.

    Google Scholar 

  5. Obrenovitch, T. P. and Richards, D. A. 1995. Extracellular neurotransmitter changes in ischaemia. Cerebrovasc. Brain Metab. Rev. 7:1–54.

    Google Scholar 

  6. Obrenovitch, T. P., Urenjak, K., and Zilka, E. 1997. Evidence disputing the link between seizure activity and high extracellular glutamate. J. Neurochem. 66: 2446–2454.

    Google Scholar 

  7. Thatcher, N. M., Morris, P. G., Prior, M. J. W., and Bachelard, H. S. 1999. MRS studies on changes in cerebral calcium, zinc and the energy state caused by excitotoxic amino acids. J. Neurochem. 72:2471–2478.

    Google Scholar 

  8. Jacquin, T., Gillet, B., Fortin, G., Pasquiez, C., Belieil, J. C., and Champagnat, J. 1989. Metabolic action of N-methyl-D-aspartate in newborn rat brain ex vivo: 31P-magnetic resonance spectroscopy. Brain Res. 497:296–304.

    Google Scholar 

  9. Ben-Yoseph, O., Bachelard, H. S., Badar-Goffer, R. S., Dolin, S. J., and Morris, P. G. 1990. Effects of N-methyl-D-aspartate on [Ca2+]i and the energy state in the brain by 19F and 31P-nuclear magnetic resonance spectroscopy. J. Neurochem. 55:1446–1449.

    Google Scholar 

  10. Badar-Goffer, R., Morris, P., Thatcher, N., and Bachelard, H. 1994. Excitotoxic amino acids cause appearance of MRS-observable zinc in superfused cortical slices. J. Neurochem. 62: 2488–2491.

    Google Scholar 

  11. Badar-Goffer, R. S., Thatcher, N. M., Morris, P. G., and Bachelard, H. S. 1994. Neither severe hypoxia nor hypoglycaemia alone causes any significant increase in [Ca2+]i-only a combination of the two insults has this effect. A 31P-and 19F-NMR study. J. Neurochem. 61:2207–2214.

    Google Scholar 

  12. Miller, M. L. 1959. Protein determination for large numbers of samples. Anal. Chem. 31:964.

    Google Scholar 

  13. Badar-Goffer, R. S., Bachelard, H. S., and Morris, P. G. 1990. Cerebral metabolism of acetate and glucose studied by 13C-NMR spectroscopy: a technique for investigating metabolic compartmentation in the brain. Biochem. J. 266:133–139.

    Google Scholar 

  14. Rourke, D. E., Prior, M. J. W., Morris, P. G., and Lohman, J. A. B. 1994. Stereographic projection method of exactly calculating selective pulses. J. Mag. Res., Series A, 107:203–214.

    Google Scholar 

  15. Lowry, O. H. and Passonneau, J. V. 1962. A flexible system of enzymatic analysis. New York: Academic Press.

    Google Scholar 

  16. Sonnewald, U., Westergaard, N., Petersen, S. B., Unsgård, G., and Schousboe, A. 1993. Metabolism of [U-13C] glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J. Neurochem. 61: 1179–1182.

    Google Scholar 

  17. Badar-Goffer, R. S., Ben-Yoseph, O., Bachelard, H. S., and Morris, P. G. 1992. Neuronal-glial metabolism under depolarizing conditions: a 13C-NMR study. Biochem. J. 282:225–230.

    Google Scholar 

  18. Sonnewald, U., Westergaard, N., Krane, J., Unsgård, G., Petersen, S. B., and Schousboe, A. 1991. First direct demonstration of preferential release of citrate from astrocytes using [13C] NMR spectroscopy of cultured neurons and astrocytes. Neurosc. Lett. 128:235–239.

    Google Scholar 

  19. Nowak, L., Bregestovski, P., Ascher, P., Herbet. A., and Prochiantz, A. 1984. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465.

    Google Scholar 

  20. Mayer, M. L., Westbrook, G. L., and Guthrie, P. B. 1984. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263.

    Google Scholar 

  21. Johnson, J. W. and Ascher, P. 1987. Glycine potentiates the NMDA response in cultured mouse brain neurones. Nature 325: 529–531.

    Google Scholar 

  22. Bachelard, H., Badar-Goffer, R., Ben-Yoseph, O., Morris, P., and Thatcher, N. 1993. Studies on NMDA and intermediary metabolism. J. Neurochem. 61S:138C.

    Google Scholar 

  23. Ben-Yoseph. O., Bachelard, H. S., Badar-Goffer, R. S., McLean, M. A., and Morris, P. G. 1992. The effects of NMDA on cerebral metabolism do not result from depolarization of the tissues: a 13C-NMR study. Abstr. 11th SMRM Meeting (Berlin):2113.

  24. Meldrum, B. and Garthwaite, J. 1991. Excitatory amino acid neurotoxicity and neurodegenerative disease. TIPS Special Report: 54–61.

  25. Choi, D. W. 1988. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. TINS 11:465–469.

    Google Scholar 

  26. Ben-Yoseph, O. 1991. Multinuclear NMR studies of cerebral metabolism. Ph. D. thesis, University of Cambridge.

  27. Garthwaite, G., Williams, G. D., and Garthwaite, J. 1992. Glutamate toxicity: an experimental and theoretical analysis. Eur. J. Neuroscience 4: 353–360.

    Google Scholar 

  28. Bouvier, M., Szatkowski, M., Amato, A., and Attwell, D. 1993. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature 360:471–474.

    Google Scholar 

  29. Skerritt, J. H. and Johnstone, G. A. R. 1981. Uptake and release of N-Methyl-D-aspartate by rat brain slices. J. Neurochem. 36:881–885.

    Google Scholar 

  30. Luque, J. M. and Richards, J. G. 1995. Expression of NMDA 2B receptor subunit mRNA in Bergmann glia. Glia 13: 228–232.

    Google Scholar 

  31. Muller, T., Grosche, J., Ohlemeyer, C., and Kettenmann, H. 1993. NMDA-activated currents in Bergmann glial-cells. Neuroreport 4:671–674.

    Google Scholar 

  32. Thompson, C. L., Drewery, D. L., Atkins, H. D., Stephenson, F. A., and Chazot, P. L. 2000. Immunohistochemical localization of N-methyl-D-aspartate receptor NR1, NR2A, NR2B and NR2C/D subunits in the adult mammalian cerebellum Neuroscience Letters 283:85–88.

    Google Scholar 

  33. Scherzer, C. R., Landwehrmeyer, G. B., Kerner, J. A., Counihan, T. J., Kosinski, C. M., Standaert, D. G., Daggett, L. P., Velicelebi, G., Penney, J. B., and Young, A. B. 1998. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: Hippocampus and cortex. Journal of Comparative neurology 390: 75–90.

    Google Scholar 

  34. Nishizaki, T., Matsuoka, T., Nomura, T., Kondoh, T., Tamaki, N., and Okada, Y. 1999. Store Ca2+ depletion enhances NMDA responses in cultured human astrocytes. Biochem. Biophys. Res. Communs. 259:661–664.

    Google Scholar 

  35. Conti, F., Barbaresi, P., Melone, M., and Ducati, A. 1999. Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex. Cerebral Cortex 9: 110–120.

    Google Scholar 

  36. Steinhauser, C., Jabs, R., and Kettenmann, H. 1994. Properties of GABA and glutamate responses in identified glial-cells of the mouse hippocampal slice. Hippocampus 4: 19–35.

    Google Scholar 

  37. Gallo, V. and Chiani, C. A. 2000. Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol. Sci. 21:252–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thatcher, N.M., Badar-Goffer, R.S., Ben-Yoseph, O. et al. A Comparison of Some Metabolic Effects of N-Methylaspartate Stereoisomers, Glutamate and Depolarization: A Multinuclear MRS Study. Neurochem Res 27, 51–58 (2002). https://doi.org/10.1023/A:1014898421330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014898421330

Navigation