Skip to main content
Log in

Delayed Cell Death Signaling in Traumatized Central Nervous System: Hypoxia

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There are two different ways for cells to die: necrosis and apoptosis. Cell death has traditionally been described as necrotic or apoptotic based on morphological criteria. There are controversy about the respective roles of apoptosis and necrosis in cell death resulting from trauma to the central nervous system (CNS). An evaluation of work published since 1997 in which electron microscopy was applied to ascertain the role of apoptosis and necrosis in: spinal cord injury, stroke, and hypoxia/ischemia (H/I) showed evidence for necrosis and apoptosis based on DNA degradation, presence of histones in cytoplasm, and morphological evidence in spinal cord. In the aftermath of stroke, many of the biochemical markers for apoptosis were present but the morphological determinations suggested that necrosis is the major source of post-traumatic cell death. This was not the case in H/I where both biochemical assays and the morphological studies gave more consistent results in a manner similar to the spinal cord injury studies. After H/I, major factors affecting cell death outcomes are DNA damage and repair processes, expression of bcl-like gene products and inflammation-triggered cytokine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Charriaut-Marlangue, C., Margaill, I., Represa, A., Popovici, T., Plotkine, M., and Ben-Ari, Y. 1996. "Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis." Journal of Cerebral Blood Flow & Metabolism 16:186–194.

    Google Scholar 

  2. Du, C., Hu, R., Csernansky, C. A., Hsu, C. Y., and Choi, D. W. 1996. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? Journal of Cerebral Blood Flow & Metabolism 16:195–201.

    Google Scholar 

  3. Chen, J., Nagayama, T., Jin, K., Stetler, R. A., Zhu, R. L., Graham, S. H., and Simon, R. P. 1998. Induction of caspase-3–like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. The Journal of Neuroscience 18:4914–4928.

    Google Scholar 

  4. Endres, M., Namura, S., Shimizu-Sasamata, M., Waeber, C., Zhang, L., Gomez-Isla, T., Hyman, B. T., and Moskowitz, M. A. 1998. Attenuation of delayed neuronal death after mild focal ischemic in mice by inhibition of the caspase family. Journal of Cerebral Blood Flow and Metabolism 18:238–247.

    Google Scholar 

  5. Matsushita, K., Matsuyama, T., Kitagawa, K., Matsumoto, M., Yanagihara, T., and Sugita, M. 1998. Alterations of Bcl-2 family proteins precede cytoskeletal proteolysis in the penumbra, but not in infarct centres following focal cerebral ischemia in mice. Neuroscience 83(2):439–448.

    Google Scholar 

  6. Guégan, C. and Sola, B. 2000. Early and sequential recruitment of apoptosis effectors after focal permanent ischemic in mice. Brain Research 856(1–2):93–100.

    Google Scholar 

  7. Nitatori, T., Ssato, N., Waguri, S., Karasawa, Y., Araki, H., Shibanai, K., Kominami, E., and Uchiyama, Y. 1995. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. The Journal of Neuroscience 15:1001–1011.

    Google Scholar 

  8. Ni, B., Wu, X., Su, Y., Stephenson, D., Smalstig, E. B., Clemens, J., and Paul, S. M. 1998. Transient global forebrain ischemia induces a prolonged expression of the caspase-3 mRNA in rat hippocampal CA1 pyramidal neurons. Journal of Cerebral Blood Flow and Metabolism 18:248–256.

    Google Scholar 

  9. Martin, L. J., Al-Abdulla, N. A., Brambrink, A. M., Kirsch, J. R., Sieber, F. E., and Portera-Cailliau, C. 1998. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Research Bulletin 46(4):281–309.

    Google Scholar 

  10. Colbourne, F., Sutherland, G. R., and Auer, R. N. 1999. Electron Microscopic Evidence Against Apoptosis as the Mechanism of Neuronal Death in Global Ischemia. Journal of Neuroscience 19(11):4200–4210. 1999.

    Google Scholar 

  11. Leist, M. and Nicotera, P. 1998. Apoptosis, excitotoxicity, and neuropathology. Experimental Cell Research 239(2):183–201.

    Google Scholar 

  12. Pieper, A. A., Verma, A., Zhang, J., and Synder, S. H. 1999. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends in Pharmacological Sciences 20(4):171–181.

    Google Scholar 

  13. Formigli, L., Papucci, L., Tanni, A., Schiavone, N., Tempestini, A., Orlandini, G. E., Capaccioloi, S., and Zecchi Orlandini, S. 2000. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J. Cell Physiol. 182:41–49.

    Google Scholar 

  14. Scott, R. J. and Hegyi, L. 1997. Cell death perinatal hypoxic-ischaemic brain injury. Neuropathology & Applied Neurobiology 23(4):307–314.

    Google Scholar 

  15. Hill, I. E., MacManus, J. P., Rasquinha, I., and Tuor, U. 1995. DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat. Brain Research 676:398–403.

    Google Scholar 

  16. Ekert, P., MacLusky, N., Luo, X. P., Lehotay, D. C., Smith, B., Post, M., and Tanswell, A. K. 1997. Dexamethasone prevents apoptosis in a neonatal rat model of hypoxic-ischemic encephalopathy (HIE) by a reactive oxygen species-independent mechanism. Brain Research 747:9–17.

    Google Scholar 

  17. Renolleau, S., Aggoun-Zouaoui, D., Ben-Ari, Y., and Charriaut-Marlangue, C. 1998. A model of Transient Unilateral Focal Ischemia With Reperfusion in the P7 Neonatal Rat Morphological Changes Indicative of Apoptosis. Stroke 29:1454–1461.

    Google Scholar 

  18. Ferrer, I., Tortosa, A., Macaya, A., Sierra, A., Moreno, D., Munell, F., Blanco, R., and Squier, W. 1994. Evidence of nuclear DNA fragmentation following hypoxia-ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil. Brain Pathology 4:115–122.

    Google Scholar 

  19. Portera-Cailliau, C., Price, D. L., and Martin, L. J. 1997. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. Journal of Comparative Neurology 378(1):70–87.

    Google Scholar 

  20. Martin, L. J., Brambrink, A. M., Price, A. C., Kaiser, A., Agnew, D. M., Ichord, R. N., and Traystman, R. J. 2000. Neuronal death in newborn striatum after hypoxia-ischemia is necrosis and evolves with oxidative stress. Neurobiology of Disease 7:169–191.

    Google Scholar 

  21. Northington, F. J., Ferriero, D. M., Flock, D. L., and Martin, L. J. 2001. Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J. Neurosci. 27:1931–1938.

    Google Scholar 

  22. Beilharz, E. J., Williams, C. E., Dragunow, M., Sirimanne, E. S., and Gluckman, P. D. 1995. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Research. Molecular Brain Research 29(1):1–14.

    Google Scholar 

  23. Walton, M., Connor, B., Lawlor, P., Young, D., Sirimanne, E., Gluckman, P., Cole, G., and Dragunow, M. 1999. Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Research-Brain Research Reviews 29(2–3):137–168.

    Google Scholar 

  24. Sidhu, R. S., Tuor, U. I., and Del Bigio, M. R. 1997. Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats. Neuroscience Letters 223(2):129–132.

    Google Scholar 

  25. Nakahara, S., Yone, K., Kakou, T., Wada Shouichi, Nagamine, T., Niiyama, T., and Ichijo, H. 1997. Induction of Apoptosis Signal Regulating Kinase 1 (ASK 1) after Spinal Cord Injury in Rats: Possible Involvement of ASKI-JNK and-p38 Pathways in Neuronal Apoptosis. Journal of Neuropathology and Experimental Neurology 58(5):442–450.

    Google Scholar 

  26. Liu X. Z., Xu, X. M., Hu, R., Du, C., Zhang, S. X., McDonald, J. W., Dong, H. X., Wu, Y. J., Fan, G. S., Jacquin, M. F., Hsu, C. Y., and Choi, D. W. 1997. Neuronal and Glial Apoptosis after Traumatic Spinal Cord Injury. Journal of Neuroscience. 17(4):5395–5406.

    Google Scholar 

  27. Kato, H., Kanellopoulos, G. K., Matsuo, S., Wu, Y. J., Jacquin, M. F., Hsu, C. Y., Kouchoukos, N. T., and Choi, D. W. 1997. Neuronal Apoptosis and Necrosis Following Spinal Cord Ischemia in the Rat. Experimental Neurology 148:464–474.

    Google Scholar 

  28. Kato, H., Kenellopoulos, G. K., Matsuo, S., Wu, Y. J., Jacquin, M. F., Hsu, C. Y., Choi, D. W., and Kouchoukos, N. T. 1997. Protection of Rat Spinal Cord from Ischemia with Dextrohan and Cycloheximide: Effects on Necrosis and Apoptosis. Journal of Thoracic and Cardiovascular Surgery. 114(4):609–618.

    Google Scholar 

  29. Guglielmo, M. A., Chan, P. T., Cortez, S., Stopa, E. G., McMillan, P., Johanson, C. E., Epstein, M., and Doberstein, C. E. 1998. The Temporal Profile and Morphologic Features of Neuronal Death in Human Stroke Resemble Those Observed in Experimental Forebrain Ischemia: The Potential Role of Apoptosis. Neurological Research 20:283–296.

    Google Scholar 

  30. Ouyang, Y. B., Tan, Y., Comb, M., Liu, C. L., Martone, M. E., Siesjo, B. K., and Hu, B. R. 1999. Survival-and Death-Promoting Events After Transient Cerebral Ischemia: Phosphorylation of Akt, Release of Cytochrome C, and Activation of Caspase-Like Proteases. Journal of Cerebral Blood Flow and Metabolism 19:1126–1135.

    Google Scholar 

  31. Pulera, M. R., Adams, L. M., Liu, H., Santos, D. G., Nishimura, R. N., Yang, F., Cole, G. M., and Wasterlain, C. G. 1998. Apoptosis in a Neonatal Rat Model of Cerebral Hypoxia-Ischemia. Stroke 29:2622–2630.

    Google Scholar 

  32. Fellman, V. and Raivio, K. O. 1997. Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatric Research 41(5):599–606.

    Google Scholar 

  33. Love, S. 1999. Oxidative stress in brain ischemia. Brain Pathology 9:119–131.

    Google Scholar 

  34. Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, J., Yuan J., and Mockowitz, M. A. 1998. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. The Journal of Neuroscience 18:3659–3668.

    Google Scholar 

  35. Taylor, D. L., Edwards, D. A., and Mehmet, H. 1999. Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathology 9:93–117.

    Google Scholar 

  36. Cheng, Y., Deshmukh, M., D'Costa, A., Demaro, J. A., Gidday, J. M., Shar, A., Sun, Y., Jacquin, M. F., Johnson Jr., E. M., and Holtzman D. M. 1998. Caspase inhibitor affords neoroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101:1992–1999.

    Google Scholar 

  37. Li, H., Colbourne, F., Sun, P., Zhao, Z., and Buchan, A. M. 2000. Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats. Stroke 31:176–182.

    Google Scholar 

  38. Chen, J., Jin, K., Chen, M., Pei, W., Kawaguchi, K., Greenberg, D. A., and Simon, R. P. 1997. Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. Journal of Neurochemistry 69(1):232–245.

    Google Scholar 

  39. Jackson, G. R. and Perez-Polo, J. R. 1994. Neurotrophin Regulation of energy homeostasis in the central nervous system. Developmental Neuroscience 16:285–290.

    Google Scholar 

  40. Plateel, M., Dehouck, M. P., Torpier, G., Cecchelli, R., and Teissier, E. 1995. Hypoxia increases the susceptibility to oxidant stress and the permeability of the blood-brain barrier endothelial cell monolayer. J Neurochem 65:2138–2145.

    Google Scholar 

  41. Smith, S. 2001. The world according to PARP. Trends in Biochemical Science 26:174–179.

    Google Scholar 

  42. Li, Y., Chopp, M., Jiang, N., Zhang, Z. G., Zaloga, C. 1995. Induction of DNA fragmentation after 10 to 120 min. of focal cerebral ischemia in rats. Stroke 26:1252–1257.

    Google Scholar 

  43. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. 1996. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157.

    Google Scholar 

  44. Taglialatela, G., Gegg, M., Perez-Polo, J. R., Williams, L. R., and Rose, G. 1996. Evidence for DNA fragmentation in the CNS of aged Fisher-344 rats. NeuroReport 7:977–980.

    Google Scholar 

  45. Lindahl, T., Satoh, M. S., Poirier, G. G., and Klungland, A. 1995. Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends in Biochemical Science 20:405–411.

    Google Scholar 

  46. Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A., Moskowitz, M. A. 1992. Oxygen radicals in cerebral ischemia. Am J Physiol 263:H1356–H1362.

    Google Scholar 

  47. Kirsch, J. R. 1987. Evidence for free radical production during reperfusion from global cerebral ischemia. Anesth Rev. 14:19–20.

    Google Scholar 

  48. Braughler, J. M. and Hall, E. D. 1989. Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad Biol Med. 6:289–301.

    Google Scholar 

  49. Imaizumi, S., Tominaga, T., Uenohara, H., Yoshimoto, T., Suzuki, J., and Fujita, Y. 1986. Initiation and propagation of lipid peroxidation in cerebral infarction models. Experimental studies. Neurological Research 8(4, Dec), 214–220.

    Google Scholar 

  50. Gardiner, M., Nilsson, B., Rehncrona, S., and Siesjo, B. K. 1981. Free fatty acids in the rat brain in moderate and severe hypoxia. Journal of Neurochemistry 36(4, Apr), 1500–1505.

    Google Scholar 

  51. Palmer, C., Vannucci, R. C., and Towfighi, J. 1990. Reduction of perinatal hypoxic-ischemic brain damage with allopurinol. Pediatric Research 27(4, Pt 1, Apr), 332–336.

    Google Scholar 

  52. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. 1991. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487.

    Google Scholar 

  53. Croteau, D. L. and VA.Bohr, V. A. 1997. Repair of oxidative damage to nuclear and mitrochondrial DNA in mammalian cells. J. Biol Chem 272:25409–25412.

    Google Scholar 

  54. Chopp, M., Chan, P. H., Hsu, C. Y., Cheung, M. D., Jacobs, T. P. 1996. DNA damage and repair in central nervous system injury. Stroke 27:363–369.

    Google Scholar 

  55. Forster, M. J., Dubey, A., Dawson, K. M., Stutts, W. A., Lal, H., and Sohal, R. S. 1996. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 93:4765–4769, 1996.

    Google Scholar 

  56. Hickey, R. W., Akino, M., Strassbaugh, S., DeComten-Meyer, G. M. 1996. Use of the moris water maze and acoustic startle chamber to evaluate neurologic injury after asphyxial arrest in rats. Ped. Res. 39:77–84.

    Google Scholar 

  57. Bursztajn, S., Feng, J-J., Berman, S. A., and Nanda, A. 2000. Poly (ADP-ribose) polynerase induction is an early signal of apoptosis in human neuroblastoma. Molecular Brain Research 76:363–376.

    Google Scholar 

  58. Zahradka, P. and Ebisuzaki, K. 1982. A shuttle mechanism for DAN-protein interactions. The regulation of poly(ADP-ribose) polymerase. Eur J Biochem 127:579–585.

    Google Scholar 

  59. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffing, P. R., Labelle, M., Lazebnick, Y. A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T., Yu, V. L., and Miller, D. K. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–42.

    Google Scholar 

  60. Duriez, P. J. and Shah, G. M. 1997. Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem. Cell Biol. 75:337–349.

    Google Scholar 

  61. Oliver, F. J., de la Rubia, G., Rolli, V., Ruiz-Ruiz, M. C., de Murcia, G., and Ménissier-de Murcia, J. 1998. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. The Journal of Biological Chemistry 273:33533–33539.

    Google Scholar 

  62. Germain, M., Affar, E. B., D'Amours, D., Dixit, V. M., Salvesen, G. S., and Poirier, G. G. 1999. Cleavage of auto-modified poly (ADP-ribose) polymerase during apoptosis. J Biol Chem 274:28379–28384.

    Google Scholar 

  63. Le Rhun, Y., Kirkland, J. B., and Shah, G. M. 1998. Cellular responses to DNA damage in the absence of poly(ADP-ribose) polymerase. Biochemical and Biophysical Research Communications 245:1–10.

    Google Scholar 

  64. Ha, H. C. and Snyder, S. H. 2000. Poly (ADP-ribose) polymerase-1 in the nervous system. Neurobiology of Disease 7:225–239.

    Google Scholar 

  65. Ha, H. C. and Snyder, S. H. 1999. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. PNAS 96:13978–13982.

    Google Scholar 

  66. Herceg, Z. and Wang, Z. Q. 1999. Failure of ply(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Molecular and Cellular Biology 19:5124–5133.

    Google Scholar 

  67. Berger, N. A. 1985. Poly(ADP-ribose) in the cellular response to DNA damage. Radiation Research 101:4–15.

    Google Scholar 

  68. Wang, Z-Q., Auer, B., Berghammer, H., Haidacher, D., Schweiger, M., and Wagner, E. F. 1995. Mice lacking ADPRT and poly(ADP-ribosylation develop normally but are susceptible to skin disease. Genes and Development 9:509–520.

    Google Scholar 

  69. Ménissier-de Murcia, J., Niedergang, C., Trucco, C., Ricoul, M., Dutrillaux, B., Mark, M., Oliver, F. J., Masson, M., Dierich, A., LeMeur, M., Waltztinger, C., Chambon, P., and de Murcia, G. 1997. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and cells. Proceedings of the National Academy of Sciences of the United States of America 94:7303–7307.

    Google Scholar 

  70. Shall, S. and de Murcia, G., 2000. Poly (ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutation Research 460:1–15.

    Google Scholar 

  71. Love, S., Barber, R., and Wilcock, G. K. 1998. Apoptosis and expression of DNA repair proteins in ischaemic brain injury in man. NeuroReport 9:955–959.

    Google Scholar 

  72. Tokime, T., Nozaki, K., Sugino, T., Kikuchi, H., Hashimoto, N., and Ueda, K. 1998. Enhanced poly(ADP-ribosyl)ation after focal ischemia in rat brain. Journal of Cerebral Blood Flow & Metabolism 18:991–997.

    Google Scholar 

  73. Love, S., Barber, R., and Wilcock, G. K. 1999b. Neuronal accumulation of poly(ADP-ribose) after brain ischaemia. Neuropathology and Applied Neurobiology 25:98–103.

    Google Scholar 

  74. Plaschke, K., Kopitz, J., Weigand, M. A., Martin, E., and Bardenheuer, H. J. 2000. The neuroprotective effect of cerebral poly(ADP-ribose) polymerase inhibition in a rat model of global ischemia. Neuroscience Letters 284:109–112.

    Google Scholar 

  75. Takahashi, K., Greenberg, J. H., Jackson, P., Maclin, K., and Zhang, J. 1997. Neuroprotective effects of inhibiting Poly(ADP-Ribose) Synthase on focal cerebral ischemia in rats. Journal of Cerebral Blood Flow and Metabolism 17:1137–1142.

    Google Scholar 

  76. Lo, E. H., Bosque-Hamilton, P., and Meng, W. 1998. Inhibition of poly (ADP-ribose) polymerase. Reduction of ischemic injury and attenuation of N-methyl-D-aspartate-induced neurotransmitter dysregulation. Stroke 29:830–836.

    Google Scholar 

  77. Takahashi, K. and Greenberg, J. H. 1999. The effect of reperfusion on neuroprotection using an inhibitor of poly(ADP-ribose) polymerase. NeuroReport 10:2017–2022.

    Google Scholar 

  78. Eliasson, M. J., Sampei, L. K., Maandir, A. S., Hurn, P. D., Traystman, R. J., Bao, J., Pieper, A. A., Wang, Z. Q., Dawson, T. M., Snyder, S. H., and Dawson, V. L. 1997. Poly(APD-ribose) polymerase gene disruption renders mice resistent to cerebral ischemia. Nature Medicine 3:1089–1095.

    Google Scholar 

  79. Leist, M., Single, B., Kunstle, G., Volbracht, C., Hentze, H., and P. Nicotera, P. 1997. Apoptosis in the absence of poly-(ADP-ribose) polymerase. Biochemical & Biophysical Research Communications 233(2):518–522.

    Google Scholar 

  80. Perez-Pinzon, M. A., Xu, G. P., Born, J., Lorenzo, J., Busto, R., Rosenthal, M., and Sick, T. J. 1999. Cytochrome C is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J. Cereb. Blood Flow Metab. 19:39–43.

    Google Scholar 

  81. Ichiyama, T., Zhao, H., Catania, A., Furukawa, S., and Lipton, J. M. 1999. Alpha-melanocyte-stimulating hormone inhibits NF-kappaB activation and IkappaBalpha degradation in human glioma cells and experimental brain inflammation. Exp. Neur. 157:359–365.

    Google Scholar 

  82. Parsadanian, A. S., Cheng, Y., Keller-Peck, C. R., Holtzman, D. M., and Snider, W. D. 1998. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J. Neurosci. 18:1009–1019.

    Google Scholar 

  83. Lou, J., Lenke, L. G., Xu, F., and O'Brien, M. 1998. In vivo Bcl-2 oncogene neuronal expression in the rat spinal cord. Spine 23:517–523.

    Google Scholar 

  84. Martinou, J. C., Dubois-dauphin, M., Staple, J. K., Rodriguez, I., Frankowski, H., Roth, K. A., Motoyama, N., and Loh, D. Y. 1996. Apoptosis of Bcl-xL deficient telencephalic cells in vitro. J. Neurosci. 16:1753–1758.

    Google Scholar 

  85. Li, G. L., Brodin, G., Farooque, M., Funa, K., Holtz, A., Wang, W. L., and Olsson, Y. 1996. Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J. Neuropath. & Exp. Neurol. 55:280–289.

    Google Scholar 

  86. Isenmann, S., Stoll, G., Schroeter, M., Krajewski, S., Reed, J. C., and Baerh, M. 1998. Differential regulation of Bax, Bcl-2, and Bcl-x proteins in focal cortical ischemia in the rat. Br. Pathol. 8:49–62.

    Google Scholar 

  87. Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H., and Bauerle, P. A. 1994. Constitutive NF-κB activity in neurons. Mol. Cell. Biol. 14:3981–3992.

    Google Scholar 

  88. Kaltschmidt, C., Kaltschmidt, B., and Baeuerle, P. A. 1995. Stimulation of ionotropic glutamate receptors activates transcription factor NF-κB in primary neurons. Proc. Natl. Acad. Sci. USA 92:9618–9622.

    Google Scholar 

  89. Meyer, M., Schreck, R., and Baeuerle, P. A. 1993. H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12:2005–2015.

    Google Scholar 

  90. Schenk, H., Klein, M., Erdbrugger, W., Droge, W., and Schulze-Osthoff, K. 1994. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NFκB and AP-1. Proc. Natl. Acad. Sci. USA 91:1672–1676.

    Google Scholar 

  91. Grilli, M., Pizzi, M., Memo, M., and Spano, P. 1996. Neuro-protection by aspirin and sodium salicylate through blockade of NF-κB activation. Science 274:1383–1385.

    Google Scholar 

  92. Taglialatela, G., Kauffman, J. A., Trevino, A., and Perez-Polo, J. R. 1998. Central Nervous System DNA fragmentation induced by the inhibition of nuclear factor Kappa B. NeuroReport 9:489–493.

    Google Scholar 

  93. Taglialatela, G., Robinson, R., and Perez-Polo, J. R. 1997. Inhibition of nuclear factor kappa B (NFkappaB) activity induces nerve growth factor-resistant apoptosis in PC12 cells. J. Neurosci. Res. 47:155–162.

    Google Scholar 

  94. Boise, H., Gottschalk, A. R., Quintans, J., and Thompson, C. B. 1995. Bcl-2 and Bcl-2–related proteins in apoptosis regulation. Curr. Top. Microbiol. Immunol. 200:107–121.

    Google Scholar 

  95. Hockenbery, D. M., Oltvai, Z. N., Yin, X-M., Milliman, C. L., and Korsmeyer, S. J. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251.

    Google Scholar 

  96. Maroto, R. and Perez-Polo, J. R. 1997. BCL-2 protein expression in apoptosis: oxidative stress versus serum deprivation in PC12 cells. J. Neurochem. 69:514–523.

    Google Scholar 

  97. Silverstein, F. S., Barks, J. D., Hagan, P., Liu, X. H., Ivacko, J., and Szaflarski, J. 1997. Cytokines and perinatal brain injury. Neurochemistry International 30:375–383.

    Google Scholar 

  98. Szaflarski, J., Burtrum, D., and Sliverstein, F. S. 1995. Cerebral hypoxia-ischemia stimulates cytokine gene expression in the perinatal rats. Stroke 26:1–8.

    Google Scholar 

  99. Martin, D., Chinookoswong, N., and Miller, G. 1994. The interleukin-1 receptor antagonist (rhLI-Ira) protects against cerebral infarction in a rat model of hypoxia-ischemia. Exp. Neurol.:362–367.

  100. Hudome, S., Palmer, C., Roberts, R. L., Mauger, D., Housman, C., and Towfighi, J. 1997. The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatric Research 41:607–616.

    Google Scholar 

  101. Hagberg, H., Gilland, E., Bona, E., Hanson, L. A., Hahin-Zoric, M., Blennow, M., Holst, M., McRae, A., Soder, O. 1996. Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatric Research 40:603–609.

    Google Scholar 

  102. Feuerstein, G. Z., Wang, X., and Barone, F. C. 1997. Inflammatory gene expression in cerebral ischemia and trauma. Ann. NY Acad. Sci. 825:179–193.

    Google Scholar 

  103. Yabuuchi, K., Minami, M., Katsumata, S., Yamazaki, A., and Satoh, M. 1994. An in situ hybridization study on interleukin-1 beta mRNA induced by transient forebrain ischemia in the rat brain. Brain Research Molecular Brain Research 26:135–142.

    Google Scholar 

  104. Buttini, M., Sauter, A., and Boddeke, H. W. 1994. Induction of interleukin-1 beta mRNA after focal cerebral ischaemia in the rat. Brain Research Molecular Brain Research 23:126–134.

    Google Scholar 

  105. Saliba, E. and Henrot, A. 2001. Inflammatory mediators and neonatal brain damage. Biol. Neonate 79:224–227.

    Google Scholar 

  106. Bona, E., Andersson, A. L., Blomgren, K., Gilland, E., Puka-Sundvall, M., and Gustafson, K., et al. 1999. Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr. Res. 45:500–509.

    Google Scholar 

  107. Pousset, F., Cremona, S., Dantzer, R., Kelley, K., and Parnet, P. 1999. Interleukin-4 and interleukin-10 regulate IL1–beta induced mouse primary astrocyte activation: a comparative study. Glia 26:12–21.

    Google Scholar 

  108. Lovett-Racke, A. E., Smith, M. E., Arredondo, L. R., Bittner, P. S., Ratts, R. B., Shive, C. L., Forsthuber, T. G., and Racke, M. K. 2000. Developmentally regulated gene expression of Th2 cytokines in the brain. Brain Research 870:27–35.

    Google Scholar 

  109. Vigneswaran, R. 2000. Infection and pretern birth: evidence of a common causal relationship with bronchopulmonary dysplasia and cerebral palsy. Journal of Paediatrics & Child Health 36:293–296.

    Google Scholar 

  110. Savman, K., Blennow, M., Gustafson, K., Tarkowski, E., and Hagberg, H. 1998. Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatric Research 43:746–751.

    Google Scholar 

  111. Dammann, O. and Leviton, A. 1999. Brain damage in pretern newborns: might enhancement of developmentally regulated endogenous protection open a door for prevention? Pediatrics 104:541–550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, D., Qiu, J., Grafe, M. et al. Delayed Cell Death Signaling in Traumatized Central Nervous System: Hypoxia. Neurochem Res 27, 97–106 (2002). https://doi.org/10.1023/A:1014858707218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014858707218

Navigation