Skip to main content
Log in

Taurine Release in the Developing and Adult Mouse Hippocampus: Involvement of Cyclic Guanosine Monophosphate

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The inhibitory neuromodulator taurine is involved in osmoregulation and cell volume adjustments in the central nervous system. In addition, taurine protects neural cells from excitotoxicity and prevents harmful metabolic events evoked by cell-damaging conditions. The release of taurine in nervous cell preparations is greatly enhanced by glutamate receptor agonists and various cell-damaging conditions. NO-generating compounds also increase taurine release in the mouse hippocampus. The further involvement of the NO/cGMP pathway and protein kinases in preloaded [3H]taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mice in normoxia and in ischemia was now studied using a superfusion system. The release was enhanced by 8-Br-cGMP and the phosphodiesterase inhibitor 2-(2-propyloxyphenyl)-8-azapurin-6-one (zaprinast), particularly in the immature hippocampus, indicating that increased cGMP levels induce taurine release. The release was also increased by the inhibitor of soluble guanylyl cyclase, 1H-(1,2,4)oxadiazolo-(4,3a)quinoxalin-1-one (ODQ) and the protein kinase C activator 4β-phorbol 12-myristate 13-acetate (PMA), but only in the adult hippocampus. The ischemia-induced release was also enhanced by increased cGMP levels in both adult and developing mice, whereas protein kinase inhibitors had no effects in any conditions. The results demonstrate that cGMP is able to modulate hippocampal taurine release in both adult and developing mice, the rise in cGMP levels evoking taurine release in normoxia and in ischemia. This could be part of the neuroprotective properties of taurine, being thus important particularly in cell-damaging conditions and in preventing excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kontro, P. and Oja, S. S. 1987. Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain. Dev. Brain Res. 37:277–291.

    Google Scholar 

  2. Huxtable, R. J. 1992. The physiological actions of taurine. Physiol. Rev. 72:101–163.

    Google Scholar 

  3. Sturman, J. A. 1993. Taurine in development. Physiol. Rev. 73:119–147.

    Google Scholar 

  4. Oja, S. S. and Saransaari, P. 1996. Taurine as a neuromodulator and osmoregulator. Metab. Brain Dis. 11:153–164.

    Google Scholar 

  5. Pasantes-Morales, H. and Schousboe, A. 1997. Role of taurine in osmoregulation in brain cells: mechanisms and functional implications. Amino Acids 12:281–292.

    Google Scholar 

  6. French, E. D., Vezzani, A., Whetsell, W. O., Jr., and Schwarcz, R. 1986. Antiexcitotoxic actions of taurine in the rat hippocampus studied in vivo and in vitro. Adv. Exp. Med. Biol. 203:349–362.

    Google Scholar 

  7. Trenkner, E. 1990. The role of taurine and glutamate during early postnatal cerebellar development of normal and weaver mutant mice. Adv. Exp. Med. Biol. 268:239–244.

    Google Scholar 

  8. Tang, X. W., Deupree, D. L., Sun, Y., and Wu, J.-Y. 1996. Biphasic effect of taurine on excitatory amino acid-induced neurotoxicity. Adv. Exp. Med. Biol. 403:499–505.

    Google Scholar 

  9. Schurr, A., Tseng, M. T., West, C. A., and Rigor, B. M. 1987. Taurine improves the recovery of neuronal function following cerebral hypoxia: an in vitro study. Life Sci. 40:2059–2066.

    Google Scholar 

  10. Oja, S. and Kontro, P. 1983. Free amino acids in epilepsy: possible role of taurine. Acta Neurol. Scand. 67 Suppl 95:5–20.

    Google Scholar 

  11. Oja, S. S. and Saransaari, P. 2000. Modulation of taurine release by glutamate receptors and nitric oxide. Prog. Neurobiol. 62: 407–425.

    Google Scholar 

  12. Lekieffre, D., Callebert, J., Plotkine, M., and Boulu, R. G. 1992. Concomitant increases in the extracellular concentrations of excitatory and inhibitory amino acids in the rat hippocampus during forebrain ischemia. Neurosci. Lett. 137:78–82.

    Google Scholar 

  13. Ooboshi, H., Sadoshima, S., Yao, H., Ibayashi, S., Matsumoto, T., Uchimura, H., and Fujishima, M. 1995. Ischemia-induced release of amino acids in the rat hippocampus of aged hypertensive rats. J. Cereb. Blood Flow Metab. 15:227–234.

    Google Scholar 

  14. Saransaari, P. and Oja, S. S. 1997. Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus. Neuroscience 79:847–854.

    Google Scholar 

  15. Saransaari, P. and Oja, S. S. 1998. Release of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from adult and developing mice in cell-damaging conditions. Neurochem. Res. 23:567–574.

    Google Scholar 

  16. Saransaari, P. and Oja, S. S. 1999. Characteristics of ischemia-induced taurine release in the developing mouse hippocampus. Neuroscience 94:949–954.

    Google Scholar 

  17. Schuman, E. R. and Madison, D. V. 1994. Nitric oxide and synaptic function. Annu. Rev. Neurosci. 17:153–183.

    Google Scholar 

  18. Garthwaite, J. 1991. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14:60–67.

    Google Scholar 

  19. Bredt, S. D., Ferris, C. D., and Snyder, S. H. 1992. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMPdependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J. Biol. Chem. 267:10976–10981.

    Google Scholar 

  20. Knowles, R. G., Palacios, M., Palmer, R. M. J., and Moncada, S. 1989. Formation of nitric oxide from L-arginine in the central nervous system: transduction mechanism for stimulation of the soluble guanylate cyclase. Proc. Natl. Acad. Sci. USA 86: 5159–5162.

    Google Scholar 

  21. Saransaari, P. and Oja, S. S. 1999. Taurine release modified by nitric oxide-generating compounds in the developing and adult mouse hippocampus. Neuroscience 89:1103–1111.

    Google Scholar 

  22. Saransaari, P. and Oja, S. S. 2002. Ischemia-induced taurine release is modified by nitric oxide-generating compounds in the developing and adult mouse hippocampus. Neurochem. Res., in press.

  23. Guevara-Guzman, R., Emson, P. C., and Kendrick, K. M. 1994. Modulation of in vivo striatal transmitter release by nitric oxide and cyclic GMP. J. Neurochem. 62:807–810.

    Google Scholar 

  24. Segieth, J., Getting, S. J., Biggs, C. S., and Whitton, P. S. 1995. Nitric oxide regulates excitatory amino acid release in a biphasic manner in freely moving rats. Neurosci. Lett. 200:101–104.

    Google Scholar 

  25. Sistiaga, A., Miras-Portugal, T., and Sánchez-Prieto, J. 1997. Modulation of glutamate release by a nitric oxide/cyclic GMP-dependent pathway. Eur. J. Pharmacol. 321:247–257.

    Google Scholar 

  26. Boulton, C. L., Irving, A. J., Southam, E., Potier, B., Garthwaite, J., and Collingridge, G. L. 1994. The nitric oxide-cyclic GMP pathway and synaptic depression in rat hippocampal slices. Eur. J. Neurosci. 6:1528–1535.

    Google Scholar 

  27. Sequeira, S. M., Carvalho, A. P., and Carvalho, C. M. 1999. Both protein kinase G dependent and independent mechanisms are involved in the modulation of glutamate release by nitric oxide in rat hippocampal nerve terminals. Neurosci. Lett. 261: 29–32.

    Google Scholar 

  28. Fedele, E., Jin, Y., Varnier, G., and Raiteri, M. 1995. In vivo microdialysis study of a specific inhibitor of soluble guanylyl cyclase on the glutamate receptor/nitric oxide cyclic GMP pathway. Br. J. Pharmacol. 119:590–594.

    Google Scholar 

  29. Garthwaite, J. and Boulton, C. L. 1995. Nitric oxide signalling in the central nervous system. Annu. Rev. Physiol. 57:683–706.

    Google Scholar 

  30. Broome, M. R., Collingridge, G. L., and Irving, A. J. 1994. Activation of the NO-cGMP signalling pathway depresses hippocampal synaptic transmission through an adenosine receptordependent mechanism. Neuropharmacology 33:1511–1513.

    Google Scholar 

  31. Lonart, G. and Johnson, K. M. 1995. Characterization of nitric oxide generator-induced hippocampal [3H]norepinephrine release. I. The role of glutamate. J. Pharmacol. Exp. Ther. 275: 7–13.

    Google Scholar 

  32. Kaehler, S. T., Singewald, N., Sinner, C., and Philippu, A. 1999. Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Res. 835:346–349.

    Google Scholar 

  33. Ohkuma, S., Narihara, H., Katsura, M., Hasegawa, T., and Kuriyama, K. 1995. Nitric oxide induced [3H]GABA release from cerebral cortical neurons is mediated by peroxynitrite. J. Neurochem. 65:1109–1114.

    Google Scholar 

  34. Ientile, R., Pedale, S., Picciurro, V., Macaione, V., Fabiano, C., and Macaione, S. 1997. Nitric oxide mediates NMDA-evoked [3H]GABA release from chick retina cells. FEBS Lett. 417: 345–348.

    Google Scholar 

  35. Montague, P. R., Gancayco, C. D., Winn, M. J., Marchase, R. B., and Friedlander, M. J. 1994. Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science 263:973–977.

    Google Scholar 

  36. Getting, S. J., Segieth, J., Ahmad, S., Biggs, C. S., and Whitton, P. S. 1996. Biphasic modulation of GABA release by nitric oxide in the hippocampus of freely moving rats in vivo. Brain Res. 717:196–199.

    Google Scholar 

  37. Kamisaki, Y., Wada, K., Nakamoto, K., and Itoh, T. 1995. Nitric oxide inhibition of the depolarization-evoked glutamate release from synaptosomes of rat cerebellum. Neurosci. Lett. 194:5–8.

    Google Scholar 

  38. Garthwaite, J., Southam, E., Boulton, C. L., Nielsen, E. B., Schmidt, K., and Mayer, B. 1995. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3–a]quinoxalin-1–one. Mol. Pharmacol. 48:184–188.

    Google Scholar 

  39. Trabace, L. and Kendrick, K. M. 2000. Nitric oxide can differently modulate striatal neurotransmitter concentrations via soluble guanylate cyclase and peroxynitrite formation. J. Neurochem. 75:1664–1674.

    Google Scholar 

  40. Nichols, R. A., Haycock, J. W., Wang, J. K. T., and Greengard, P. 1987. Phorbol ester enhancement of neurotransmitter release from rat brain synaptosomes. J. Neurochem. 48:615–621.

    Google Scholar 

  41. Barrie, A. P., Nicholls, D. G., Sanchez-Prieto, J., and Sihra, T. S. 1991. An ion channel locus for the protein kinase C potentiation of transmitter glutamate release from guinea pig cerebrocortical synaptosomes. J. Neurochem. 57:1398–1404.

    Google Scholar 

  42. Eboli, M. L., Ciotti, M. T., Mercanti, D., and Calissano, P. 1993. Differential involvement of protein kinase C in transmitter release and response to excitatory amino acids in cultured cerebellar neurons. Neurochem. Res. 18:133–138.

    Google Scholar 

  43. Malenka, R. C., Madison, D. V., and Nicoll, R. A. 1986. Potentiation of synaptic transmission in the hippocamapus by phorbol esters. Nature 321:175–177.

    Google Scholar 

  44. Murphy, N. P., Corider, J., Glowinski, J., and Prémont, J. 1994. Is protein kinase C required for the N-methyl-D-aspartate-evoked rise in cytosolic Ca2+ in mouse striatal neurons? Eur. J. Neurosci. 6:854–860.

    Google Scholar 

  45. Durkin, J. P., Tremblay, R., Buchan, A., Blosser, J., Chakravarthy, B., Mealing, G., Morley, P., and Song, D. 1996. An early loss in protein kinase C activity precedes the excitatory amino acid-induced death of primary cortical neurons. J. Neurochem. 66: 951–962.

    Google Scholar 

  46. Deleuze, C., Duvoid, A., Moos, F. C., and Hussy, N. 2000. Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus. J. Physiol. 523:291–299.

    Google Scholar 

  47. Loo, D. D. F., Hirsch, J. R., Sarkar, H. K., and Wright, E. M. 1996. Regulation of the mouse retinal taurine transporter (TAUT) by protein kinases in Xenopus oocytes. FEBS Lett. 392: 250–254.

    Google Scholar 

  48. Saransaari, P. and Oja, S. S. 1997. Glutamate-agonist-evoked taurine release from the adult and developing mouse hippocampus in cell-damaging conditions. Amino Acids 13:323–335.

    Google Scholar 

  49. Saransaari, P. and Oja, S. S. 2000. Involvement of metabotropic glutamate receptors in ischemia-induced taurine release. Neurochem. Res. 25:1067–1072.

    Google Scholar 

  50. Saransaari, P. and Oja, S. S. 1998. Mechanisms of ischemia-induced taurine release in mouse hippocapal slices. Brain Res. 807:118–124.

    Google Scholar 

  51. Iadecola, C. 1997. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 20:132–139.

    Google Scholar 

  52. Sorrenti, V., Di Giacomo, C., Campisi, A., Perez-Polo, J. R., and Vanella, A. 1999. Nitric oxide synthetase activity in cerebral post-ischemic reperfusion and effects of L-NG-nitroarginine and 7–nitroindazole on the survival. Neurochem. Res. 24:861–866.

    Google Scholar 

  53. Globus, M. Y.-T., Prado, R., and Busto, R. 1995. Ischemia-induced changes in extracellular levels of striatal cyclic GMP: role of nitric oxide. Neuroreport 6:1909–1912.

    Google Scholar 

  54. Fedele, E. and Raiteri, M. 1999. In vivo studies of the cerebral glutamate receptor/NO/cGMP pathway. Prog. Neurobiol. 58:89–120.

    Google Scholar 

  55. Nakane, H., Yao, H., Ibayashi, S., Kitanozo, T., Ooboshi, H., Uchimura, H., and Fujishima, M. 1998. Protein kinase C modulates ischemia-induced amino acid release in the striatum of hypertensive rats. Brain Res. 782:290–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saransaari, P., Oja, S.S. Taurine Release in the Developing and Adult Mouse Hippocampus: Involvement of Cyclic Guanosine Monophosphate. Neurochem Res 27, 15–20 (2002). https://doi.org/10.1023/A:1014838202675

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014838202675

Navigation