Skip to main content
Log in

Phase Space Portraits of an Unresolved Gravitational Maxwell Demon

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In 1885, during initial discussions of J. C. Maxwell's celebrated thermodynamic demon, Whiting(1) observed that the demon-like velocity selection of molecules can occur in a gravitationally bound gas. Recently, a gravitational Maxwell demon has been proposed which makes use of this observation [D. P. Sheehan, J. Glick, and J. D. Means, Found. Phys. 30, 1227 (2000)]. Here we report on numerical simulations that detail its microscopic phase space structure. Results verify the previously hypothesized mechanism of its paradoxical behavior. This system appears to be the only example of a fully classical mechanical Maxwell demon that has not been resolved in favor of the second law of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Whiting, Science 6, 83 (1885).

    Google Scholar 

  2. D. P. Sheehan, J. Glick, and J. D. Means, Found. Phys. 30, 1227 (2000).

    Google Scholar 

  3. D. P. Sheehan and J. Glick, Physica Scripta 61, 635 (2000).

    Google Scholar 

  4. J. C. Maxwell, letter to P. G. Tait, 11 December 1867, in Life and Scientific Work of Peter Guthrie Tait, C. G. Knott, ed. (Cambridge University Press, London, 1911), pp. 213–215.

    Google Scholar 

  5. J. C. Maxwell, Theory of Heat (Longmans &;; Green, London, 1871), Chap. 12.

    Google Scholar 

  6. L. J. Brillouin, Appl. Phys. 22, 338 (1951).

    Google Scholar 

  7. L. Szilard, Z. Phys. 53, 840 (1929).

    Google Scholar 

  8. C. H. Bennett, Sci. Amer. 257, 108 (1987).

    Google Scholar 

  9. W. H. Zurek, Nature 341, 119 (1989).

    Google Scholar 

  10. H. S. Leff and A. F. Rex, Maxwell's Demon Entropy, Information, Computing (Princeton University Press, Princeton, 1990).

    Google Scholar 

  11. L. G. M. Gordon, Found. Phys. 13, 989 (1983).

    Google Scholar 

  12. D. P. Sheehan, Phys. Plasma 2, 1893 (1995).

    Google Scholar 

  13. D. P. Sheehan, Phys. Plasma 3, 104 (1996).

    Google Scholar 

  14. D. P. Sheehan and J. D. Means, Phys. Plasma 5, 2469 (1998).

    Google Scholar 

  15. D. P. Sheehan, Phys. Rev. E 57, 6660 (1998).

    Google Scholar 

  16. D. P. Sheehan, Phys. Lett. A 280, 185 (2001).

    Google Scholar 

  17. V. Capek, J. Phys. A: Math. Gen. 30, 5245 (1997).

    Google Scholar 

  18. V. Capek, Phys. Rev. E 57, 3846 (1998).

    Google Scholar 

  19. A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev. Lett. 85, 232 (2000).

    Google Scholar 

  20. A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev. Lett. 85, 1799 (2000).

    Google Scholar 

  21. A. V. Nikulov, Phys. Rev. B. 64, 012505 (2001).

    Google Scholar 

  22. J. W. Chamberlain and D. M. Hunten, Theory of Planetary Atmospheres (Academic, Orlando, 1987).

    Google Scholar 

  23. E. S. Parilis, L. M. Kishinevsky, N. Yu. Turaev, B. E. Baklitzky, F. F. Umarov, V. Kh. Verleger, S. L. Nizhnaya, and I. S. Bitensky, Atomic Collisions on Solid Surfaces (North Holland, Amsterdam, 1993).

    Google Scholar 

  24. R. I. Masel, Principles of Adsorption and Reaction on Solid Surfaces (Wiley, New York, 1995).

    Google Scholar 

  25. E. Hulpke, ed., Helium Atom Scattering from Surfaces (Springer, Berlin, 1992).

    Google Scholar 

  26. V. Capek and J. Bok, Phys. A: Math. Gen. 31, 8745 (1998).

    Google Scholar 

  27. V. Capek and J. Bok, Physica A 290, 379 (2001).

    Google Scholar 

  28. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).

    Google Scholar 

  29. D. P. Sheehan, J. Bowles, and R. McWilliams, Phys. Plasma 4, 3177 (1997).

    Google Scholar 

  30. D. P. Sheehan, R. Koslover, and R. McWilliams, J. Geophys. Res. 96, 14, 107 (1991).

    Google Scholar 

  31. J. R. Sanmartin, Eur. J. Phys. 16, 8 (1995).

    Google Scholar 

  32. S. N. Shore, An Introduction to Astrophysical Hydrodynamics (Academic, San Diego, 1992), pp. 319–324.

    Google Scholar 

  33. B. D. Mills Jr., Am. J. Phys. 27, 115 (1959).

    Google Scholar 

  34. W. T. Grandy, Foundations of Statistical Mechanics (Dordrecht, Reidel, 1987), pp. 283–286.

  35. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Google Scholar 

  36. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    Google Scholar 

  37. D. P. Sheehan, J. Sci. Explor. 12, 303 (1998).

    Google Scholar 

  38. T. Duncan, Phys. Rev. E 61, 4661 (2000).

    Google Scholar 

  39. D. P. Sheehan, Phys. Rev. E 61, 4662 (2000).

    Google Scholar 

  40. A fifth demon, a solid state analog to the first plasma paradox, appears possible and is currently being investigated. D. P. Sheehan and R. Putnam, Solid State Electron. (in review) (2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheehan, D.P., Glick, J., Duncan, T. et al. Phase Space Portraits of an Unresolved Gravitational Maxwell Demon. Foundations of Physics 32, 441–462 (2002). https://doi.org/10.1023/A:1014813413305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014813413305

Navigation