Skip to main content
Log in

Towards a Landau–Ginzburg-Type Theory for Granular Fluids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we show how, under certain restrictions, the hydrodynamic equations for the freely evolving granular fluid fit within the framework of the time dependent Landau–Ginzburg (LG) models for critical and unstable fluids. The granular fluid, which is usually modeled as a fluid of inelastic hard spheres (IHS), exhibits two instabilities: the spontaneous formation of vortices and of high density clusters. We suppress the clustering instability by imposing constraints on the system sizes, in order to illustrate how LG-equations can be derived for the order parameter, being the rate of deformation or shear rate tensor, which controls the formation of vortex patterns. From the shape of the energy functional we obtain the stationary patterns in the flow field. Quantitative predictions of this theory for the stationary states agree well with molecular dynamics simulations of a fluid of inelastic hard disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. R. Nagel, Rev. Mod. Phys. 64:321 (1992).

    Google Scholar 

  2. C. S. Campbell, Annu. Rev. Fluid Mech. 22:57 (1990).

    Google Scholar 

  3. W. Losert, L. Bocquet, T. C. Lubensky, and J. P. Gollub, Phys. Rev. Lett. 85:1428 (2000). L. Bocquet, W. Losert, D. Schalk, T. C. Lubensky, and J. P. Gollub, Phys. Rev. E 65:U11307 (2001).

    Google Scholar 

  4. P. B. Umbanhowar, F. Melo, and H. L. Swinney, Nature 382:793 (1996).

    Google Scholar 

  5. G. P. Collins, Sci. Am. 284 (1):17 (2001).

    Google Scholar 

  6. E. R. Nowak, J. B. Knight, E. Ben-Naim, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 57:1971 (1998). J. S. Olafsen and J. S. Urbach, Phys. Rev. Lett. 81:4369 (1998).

    Google Scholar 

  7. D. R. Williams and F. C. MacKintosh, Phys. Rev. E 54:R9 (1996). G. Peng and T. Ohta, Phys. Rev. E 58:4737 (1998). C. Bizon, M. D. Shattuck, J. B. Swift, and H. L. Swinney, Phys. Rev. E 60:4340 (1999). A. Puglisi, V. Loreto, U. Marini Bettolo Marconi, A. Petri, and A. Vulpiani, Phys. Rev. Lett. 81:3848 (1998). A. Puglisi, V. Loreto, U. Marini Bettolo Marconi, and A. Vulpiani, Phys. Rev. E 59:5582 (1999). T. P. C. van Noije, M. H. Ernst, E. Trizac, and I. Pagonabarraga, Phys. Rev. E 59:4326 (1999).

    Google Scholar 

  8. J. T. Jenkins and M. W. Richman, Phys. Fluids 28:3485 (1985). J. T. Jenkins and S. B. Savage, J. Fluid Mech. 130:187 (1983).

    Google Scholar 

  9. I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70:1619 (1993). I. Goldhirsch, M-L. Tan, and G. Zanetti, J. Scient. Comp. 8:1 (1993).

    Google Scholar 

  10. R. Soto, M. Mareschal, and M. Malek Mansour, Phys. Rev. E 62:3836 (2000).

    Google Scholar 

  11. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  12. L. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 1959).

  13. J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87:1051 (1997).

    Google Scholar 

  14. J. A. G. Orza, R. Brito, T. P. C. van Noije, and M. H. Ernst, Int. J. Mod. Phys. C 8:953 (1997).

    Google Scholar 

  15. T. P. C. van Noije, M. H. Ernst, R. Brito, and J. A. G. Orza, Phys. Rev. Lett. 79:411 (1997).

    Google Scholar 

  16. T. P. C. van Noije, M. H. Ernst, and R. Brito, Phys. Rev. E 57:R4891 (1998).

    Google Scholar 

  17. P. K. Haff, J. Fluid Mech. 134:401 (1983).

    Google Scholar 

  18. S. McNamara, Phys. Fluids A 5:3056 (1993).

    Google Scholar 

  19. P. Deltour and J.-L. Barrat, J. Phys. I France 7:137 (1997).

    Google Scholar 

  20. J. J. Brey, F. Moreno, and J. W. Dufty, Phys. Rev. E 54:445 (1996)

    Google Scholar 

  21. S. E. Esipov and T. Pöschel, J. Stat. Phys. 86:1385 (1997).

    Google Scholar 

  22. T. P. C. van Noije and M. H. Ernst, Phys. Rev. E 61:1765 (2000).

    Google Scholar 

  23. R. Brito and M. H. Ernst, Europhys. Lett. 43:497 (1998). R. Brito and M. H. Ernst, Int. J. Mod. Phys. C 9:1339 (1998).

    Google Scholar 

  24. J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Phys. Rev. E 60:3150 (1999).

    Google Scholar 

  25. E. Ben-Naim, S. Y. Chen, G. D. Doolen, and S. Redner, Phys. Rev. Lett. 83:4069 (1999).

    Google Scholar 

  26. J. Wakou, to be published.

  27. G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, 1970).

  28. U. Frisch, Turbulence: The legacy of A. N. Kolmogorov (Cambridge University Press, 1996).

  29. E. Trizac and A. Barrat, Eur. Phys. J. E. 3:291 (2000).

    Google Scholar 

  30. S. Chen, Y. Deng, X. Nie, and Y. Tu, Phys. Lett. A 269:218 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakou, J., Brito, R. & Ernst, M.H. Towards a Landau–Ginzburg-Type Theory for Granular Fluids. Journal of Statistical Physics 107, 3–22 (2002). https://doi.org/10.1023/A:1014590000158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014590000158

Navigation