Skip to main content
Log in

Wolf–Rayet star nucleosynthesis and the isotopic composition of the Galactic Cosmic Rays

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

There is now strong observational evidence that the composition of the Galactic Cosmic Rays (GCRs) exhibits some significant deviations with respect to the abundances measured in the local (solar neighbourhood) interstellar medium (ISM). Two main scenarios have been proposed in order to account for these differences (`anomalies’). The first one, referred to as the `two-component scenario’, invokes two distinct components to be accelerated to GCR energies by supernova blast waves. One of these components is just made of ISM material of `normal’ solar composition, while the other one emerges from the wind of massive mass-losing stars of the Wolf–Rayet (WR) type. The second model, referred to as the `metallicity-gradient scenario’, envisions the acceleration of ISM material whose bulk composition is different from the local one as a result of the fact that it originates from inner regions of the Galaxy, where the metallicity has not the local value. In both scenarios, massive stars, particularly of the WR type, play an important role in shaping the GCR composition. After briefly reviewing some basic observations and predictions concerning WR stars (including s-process yields), this paper revisits the two proposed scenarios in the light of recent non-rotating or rotating WR models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott, D. C. and Conti, P. S.: 1987, ‘Wolf-Rayet stars’, AARAA 25, 113.

    Google Scholar 

  • Angulo, C., Arnould, M., Rayet, M. and the NACRE Collaboration: 1999, ‘A Compilation of Charged-Particle Induced Thermonuclear Reaction Rates’, Nucl. Phys. A656, 3.

    Google Scholar 

  • Arnould, M.: 1984, ‘Stellar Nucleosynthesis and the Cosmic-Ray Source Composition up to Zn’, Adv. Space Res. 4, 45.

    Google Scholar 

  • Arnould, M., Paulus, G., and Meynet, G.: 1997, ‘Short-lived radionuclide production by nonexploding Wolf-Rayet stars’, Astron. Astrophys. 321, 452.

    Google Scholar 

  • Carigi, L.: 2000, astro-ph/0005042.

  • Connell, J. J. and Simpson, J. A.: 1997, ‘High Resolution Measurements of the Isotopic Composition of Galactic Cosmic Ray C, N, O,Mg, and Si from the Ulysses HET’, Proc. 25th Int. Cosmic. Ray Conf. 3, 381.

    Google Scholar 

  • Crowther, P. A., Smith, L. J., and Hillier, D. J.: 1995, ‘Fundamental Parameters ofWolf-Rayet Stars. II. Tailored Analyses of Galactic WNL Stars’, Astron. Astrophys. 293, 403.

    Google Scholar 

  • Dessart, L., Crowther, P. A., Hillier, J. D. et al.: 2000, ‘Quantitative Analysis of WC Stars: Constraints on Neon Abundances from ISO-SWS Spectroscopy’, Monthly Notices Roy. Astron. Soc. 315, 407.

    Google Scholar 

  • DuVernois, M. A., Garcia-Munoz, M., Pyle, K. R., Simpson, J. A., and Thayer, M. R., 1996, ‘The Isotopic Composition of Galactic Cosmic-Ray Elements from Carbon to Silicon: the Combined Release and Radiation Effects Satellite Investigation’, Astrophys. J. 466, 457.

    Google Scholar 

  • Ellison, D. C., Drury, L. O’C., and Meyer, J.-P.: 1997, ‘Galactic Cosmic Rays from Supernova Remnants. II. Shock Acceleration of Gas and Dust’, Astrophys. J. 487, 197.

    Google Scholar 

  • Ellison, D. C. and Meyer, J.-P.: 2001, ‘The Origin of Present Day Cosmic-Rays: Fresh SN Ejecta or InterstellarMedium Material ? II Physics of the SNR shock wave acceleration.’, ‘Li Be B, Cosmic Rays and Gamma-ray Line Astronomy’, ASP Conf. Series, Astron. Soc. Pacific (in press).

  • Esteban, C.: 1998, ‘Ring Nebulae around Evolved Massive Stars: Observational Clues’, Revista Mexicana de Astronomia y Astrofisica 7, 42.

    Google Scholar 

  • Fliegner, J. and Langer, N.: 1995, in Karel A. van der Hucht and Peredur M. Williams (eds.), ‘Models of Rotating Wolf-Rayet Stars’, IAU Symp. 163, 326.

  • George, J. S., Wiedenbeck, M. E., Barghouty, A. F. et al.: 2000, ‘Cosmic Ray Source Abundances and the Acceleration of Cosmic Rays’, Proceedings of ACE 2000 Workshop (in press).

  • Grafener, G., Hamann, W.-R., Hillier, D. J. and Koesterke, L.: 1998, ‘Spectral Analyses of WC Stars in the LMC’, Astron. Astrophys. 329, 190.

    Google Scholar 

  • Hamann, W.-R., Koesterke, L., and Gräfener, G.: 1999, in Karel A. van der Hucht and Peredur M. Williams (eds.), ‘Modelling and Quantitative Analyses of Wolf-Rayet Spectra: Recent Progress and Results’, IAU Symp. 193, 138.

  • Hillier, D. J. and Miller, D. L.: 1999, ‘Constraints on the Evolution of Massive Stars through Spectral Analysis. I. The WC5 Star HD 165763’, Astrophys. J. 519, 354.

    Google Scholar 

  • Kudritzki, R. P., Pauldrach, A. W. A., Puls, J., and Voels, S. R.: 1991, in Raymond Haynes and Douglas Milne (eds.), ‘Winds of Hot Stars in the Magellanic Clouds’, IAU Symp. 148, 279.

  • Lukasiak, A., Ferrando, P., McDonald, F. B., and Webber, W. R.: 1994, ‘Cosmic-Ray Isotopic Composition of C, N, O, Ne, Mg, Si Nuclei in the Energy Range 50–2000 MeV per Nucleon Measured by the Voyager Spacecraft During the Solar Minimum Period’, Astrophys. J. 426, 366.

    Google Scholar 

  • Maeder, A.: 1984, ‘Isotopic Anomalies in Cosmic Rays and Winds from Wolf-Rayet Stars: A New Model’, Adv. Space Res. 4(2–3), 55.

    Google Scholar 

  • Maeder, A.: 1987, ‘Evidences for a Bifurcation in Massive Star Evolution. The ON-blue Stragglers’, Astron. Astrophys. 178, 159.

    Google Scholar 

  • Maeder, A.: 1992, ‘Stellar Yields as a Function of Initial Metallicity and Mass Limit for Black Hole Formation’, Astron. Astrophys. 264, 105.

    Google Scholar 

  • Maeder, A.: 1996, in C. Leitherer, U. Fritze von Alvensleben, and J. Huchra (eds.), ‘Stellar Evolution: High Mass’, ASP Conf. Series 98, 141.

  • Maeder, A. and Meynet, G.: 1993, ‘Isotopic Anomalies in Cosmic Rays and the Metallicity Gradient in the Galaxy’, Astron. Astrophys. 278, 406.

    Google Scholar 

  • Maeder, A. and Conti, P.: 1994, ‘Massive Star Populations in Nearby Galaxies’, ARAA 32, 227.

    Google Scholar 

  • Maeder, A. and Meynet, G.: 1994, ‘New Models of Wolf-Rayet Stars and Comparison with Data in Galaxies’, Astron. Astrophys. 287, 803.

    Google Scholar 

  • Maeder, A. and Meynet, G.: 2000, ‘The Evolution of Rotating Stars’, ARAA 38 (in press).

  • Maeder, A., Lequeux, J. and Azzopardi, M.: 1980, ‘The Numbers of Red Supergiants and WR Stars in Galaxies — An Extremely Sensitive Indicator of Chemical Composition’, Astron. Astrophys. 90, L17.

    Google Scholar 

  • Marston, A. P.: 1999, in Karel A. van der Hucht, Gloria Koenigsberger, and Philippe R. J. Eenens (eds.), ‘Ring Nebulae, what They Tell Us About Wolf-Rayet Stars’, IAU Symp. 193, 306.

  • Meynet, G.: 1998, in B. Wolf, O. Stahl, and A. W. Fullerton (eds.), ‘Rotation and Wolf-Rayet Star Formation’, Variable and Non-spherical Stellar Winds in Luminous Hot Stars, IAU Colloq. 169, 377.

  • Meynet, G.: 2000, in A; Lançon (ed.), ‘Evolution of Rotating Massive Stars into the Wolf-Rayet Phase at Solar Metallicity’, Massive Stellar Clusters, ASP Conf. Ser. (in press).

  • Meynet, G. and Maeder, A.: 1997, ‘Wolf-Rayet Stars and Isotopic Anomalies in Cosmic Rays’, Adv. Space Res. 19(5), 763.

    Google Scholar 

  • Meynet, G. and Maeder, A.: 2000, in preparation.

  • Meynet, G., Maeder, A., Schaller, G., Schaerer, D., and Charbonnel, C.: 1994, ‘Grids of Massive Stars with High Mass Loss Rates. V. From 12 to 120 M⊙ at Z = 0.001, 0.004, 0.008, 0.020 and 0.040’, Astron. Astrophys. Suppl. 103, 97.

    Google Scholar 

  • Meyer, J.-P., Drury, L. O’C., and Ellison, D. C.: 1997, ‘Galactic Cosmic Rays from Supernova Remnants. I. A Dosmic-Ray Composition Controlled by Volatility and Mass-To-Charge Ratio’, Astrophys. J. 487, 182.

    Google Scholar 

  • Nugis, T., Crowther, P. A., and Willis, A. J.: 1998, ‘Clumping-Corrected Mass-Loss Rates of Wolf-Rayet Stars’, Astron. Astrophys. 333, 956.

    Google Scholar 

  • Prantzos, N., Arnould, M., and Arcoragi, J.-P.: 1987, ‘Neutron Capture Nucleosynthesis During Core Helium Burning in Massive Stars’, Astrophys. J. 315, 209.

    Google Scholar 

  • Prantzos, N., Vangioni-Flam, E., and Chauveau, S.: 1994, ‘Evolution of Carbon and Oxygen in the Galaxy: The Effect of Metallicity Dependent Yields’, Astron. Astrophys. 285, 132.

    Google Scholar 

  • Ringger, D.: 2000, ‘Rotation et production d’aluminium 26 Par les étoiles de Wolf-Rayet’, Diploma work, Geneva University.

  • Vanbeveren, D. and de Loore, C.: 1993, in J. P. Cassinelli and E. B. Churchwell (eds.), ‘The Influence of Close Binary Evolution on the Theoretically Predicted Number Distribution or WR Stars in the Galaxy and in the Magellanic Clouds’, ASP Conf. Series. 35, 257.

  • van der Hucht, K. A.: 1992, ‘Wolf-Rayet Stars’, Astron. Astrophys. Rev. 4, 123.

    Google Scholar 

  • van der Hucht, K. A.: 2001, ‘The VIIth Catalogue of Galactic Wolf-Rayet Stars’, New Astron. Rev. 45, 135-232.

    Google Scholar 

  • Wiedenbeck, M. E.: 2000, ‘Cosmic-Ray Isotopic Composition Results from the ACEMission’, Proc. 26th Int. Cosmic Ray Conf. p.301.

  • Wiedenbeck, M. E., Binns, W. R., Christian E. R., Cummings, A. C., Dougherty, B. L., Hink, P. L., Klarmann, J., Leske, R. A., Lijowski, M., Mewaldt, R. A., Stone, E. C., Thayer, M. R., von Rosenvinge, T. T., and Yanasak, N. E.: 1999, ‘Constraints on the Time Delay Between Nucleosynthesis and Cosmic-Ray Acceleration from Observations of 59Ni and 59Co’, Astrophys. J. 523, L61.

    Google Scholar 

  • Williams, P. M.: 1996, in J. M. Vreux, A. Detal, D. Fraipont-Caro, E. Gosset, and G. Rauw (eds.), Wolf-Rayet Stars at Long Wavelengths — Inferences from Infrared and Radio Observations, ‘Wolf-Rayet Stars in the Framework of Stellar Evolution’. Université de Liège, Institut d’Astrophysique, Liège p. 135.

    Google Scholar 

  • Williams, P. M.: 1999, in K. A. van der Hucht, G. Koeningsberger and P. R. J. Eenens (eds.), ‘Observations of Colliding-Wind Effects at Long Wavelengths: IR to radio’. Wolf-Rayet Phenomena in Massive Stars and Starburst Galaxies, IAU Symp. 193, 267.

  • Willis, A. J.: 1991, in G. Michaud, A. V. Tutukov (eds.), ‘Abundances in Wolf-Rayet Stars, LBVs and OBN Stars’, ‘Evolution of Stars: the Photospheric Abundance Connection’, IAU Symp. 145, 195.

  • Willis, A.: 1999, in K. A. van der Hucht, G. Koeningsberger, and P. R. J. Eenens (eds.), ‘Properties of Wolf-Rayet Stars from X-ray to Radio Data’, ‘Wolf-Rayet Phenomena in Massive Stars and Starburst Galaxies’, IAU Symp. 193, 1.

  • Willis, A. J., Dessart, L., Crowther, P. A., Morris, P. W., and van der Hucht, K. A.: 1998, ‘ISO SWS Spectroscopy of WR 146 (WC6+O)’, Astrophys. Space Sci. 255, 167.

    Google Scholar 

  • Woosley, S. E. and Weaver, T. A.: 1995, ‘The Evolution and Explosion ofMassive Stars. II. Explosive Hydrodynamics and Nucleosynthesis’, Astrophys. J. Suppl. Ser. 101, 181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meynet, G., Arnould, M., Paulus, G. et al. Wolf–Rayet star nucleosynthesis and the isotopic composition of the Galactic Cosmic Rays. Space Science Reviews 99, 73–84 (2001). https://doi.org/10.1023/A:1013876527660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013876527660

Keywords

Navigation