Skip to main content
Log in

Particle Description of Zero-Energy Vacuum II: Basic Vacuum Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We describe vacuum as a system of virtual particles, some of which have negative energies. Any system of vacuum particles is a part of a keneme, i.e., of a system of n particles which can, without violating the conservation laws, annihilate in the strict sense of the word (transform into nothing). A keneme is a homogeneous system, i.e., its state is invariant by all transformations of the invariance group. But a homogeneous system is not necessarily a keneme. In the simple case of a spin system, where the invariance group is SU(2), a homogeneous system is a system whose total spin is unpolarized; a keneme is a system whose total spin is zero. The state of a homogeneous system is described by a statistical operator with infinite trace (von Neumann), to which corresponds a characteristic distribution. The characteristic distributions of the homogeneous systems of vacuum are defined and studied. Finally it is shown how this description of vacuum can be used to solve the frame problem posed in paper (I).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J.-Y. Grandpeix, and F. Lurc¸at, “Particle description of zero energy vacuum I: Virtual Particles,” preceding article.

  2. J. von Neumann, The Mathematical Foundations of Quantum Mechanics, Chap. IV, Secs. 1 and 2 (Princeton University Press, Princeton, 1955).

    Google Scholar 

  3. A. Rényi, Probability Theory (North-Holland, Amsterdam, 1970).

    Google Scholar 

  4. A. Rényi, Foundations of Probability (Holden-Day, San Francisco, 1970).

    Google Scholar 

  5. S. Weinberg, The Quantum Theory of Fields, Vol. I (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  6. Ya. B. Zeldovich, Soviet Physics Uspekhi 11, 382–393 (1968).

    Google Scholar 

  7. S. Weinberg, Rev. Mod. Phys. 61, 1–23 (1989).

    Google Scholar 

  8. L. Abbott, Sci. Amer. 258 (5), 82–88 (1988).

    Google Scholar 

  9. H. Epstein, V. Glaser, and A. Jaffe, Nuov. Cim. 36, 1016–1022 (1965).

    Google Scholar 

  10. L. Schwartz, Théorie des Distributions, Vol. 2 (Hermann, Paris, 1959).

    Google Scholar 

  11. J. Dixmier, Les Algèbres d'Opérateurs dans l'Espace Hilbertien (Gauthier-Villars, Paris, 1957).

    Google Scholar 

  12. G. Lü ders, Annal. der Physik 8, 322-328 (1951).

    Google Scholar 

  13. W. Franz, Z. Phys. 184, 181–190 (1965).

    Google Scholar 

  14. P. Bonnet, J. Functional Analysis 55, 220–246 (1984).

    Google Scholar 

  15. E. Hewitt, and K. A. Ross, Abstract Harmonic Analysis, Vol. II (Springer, Berlin, 1970).

    Google Scholar 

  16. N. N. Bogoliubov, Lectures on Quantum Statistics, Vol. I (Gordon & Breach, London, 1967).

    Google Scholar 

  17. P. Moussa, and R. Stora, “Angular Analysis of Elementary Particle Reactions,” in Proceedings of the 1966 International School on Elementary Particles, Hercegnovi (Gordon & Breach, New York, 1968).

    Google Scholar 

  18. H. Joos, and R. Schrader, “On the primitive characters of the Poincaré group,” in Lectures in Theoretical Physics 7A, 87–106 (1964) (University of Colorado, Boulder, 1965).

    Google Scholar 

  19. H. Joos, and R. Schrader, Commun. Math. Phys. 7, 21–50 (1968).

    Google Scholar 

  20. G. Fuchs, and P. Renouard, J. Math. Phys. 11, 2617–2645 (1970).

    Google Scholar 

  21. U. Fano, Rev. Mod. Phys. 29, 74–93 (1957).

    Google Scholar 

  22. Nghiäm Xuan Hai, Commun. Math. Phys. 12, 331–350 (1969).

    Google Scholar 

  23. Nghiäm Xuan Hai, Commun. Math. Phys. 22, 301–320 (1971).

    Google Scholar 

  24. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freman, San Francisco, 1973).

    Google Scholar 

  25. M. A. Markov, “Mach's principle and physical vacuum in the general theory of relativity,” in Problems of Theoretical Physics, Essays dedicated to N. N. Bogoliubov (Nauka, Moscow, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandpeix, JY., Lurçat, F. Particle Description of Zero-Energy Vacuum II: Basic Vacuum Systems. Foundations of Physics 32, 133–158 (2002). https://doi.org/10.1023/A:1013805015526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013805015526

Keywords

Navigation