Skip to main content
Log in

Hyperscaling Inequalities for the Contact Process and Oriented Percolation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The contact process and oriented percolation are expected to exhibit the same critical behavior in any dimension. Above their upper critical dimension d c, they exhibit the same critical behavior as the branching process. Assuming existence of the critical exponents, we prove a pair of hyperscaling inequalities which, together with the results of refs. 16 and 18, implies d c=4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Aizenman and D. J. Barsky, Sharpness of the phase transition in percolation models, Commun. Math. Phys. 108:489-526 (1987).

    Google Scholar 

  2. M. Aizenman and C. M. Newman, Tree graph inequalities and critical behavior in percolation models, J. Statist. Phys. 36:107-143 (1984).

    Google Scholar 

  3. D. J. Barsky and M. Aizenman, Percolation critical exponents under the triangle condition, Ann. Probab. 19:1520-1536 (1991).

    Google Scholar 

  4. D. J. Barsky and C. C. Wu, Critical exponents for the contact process under the triangle condition, J. Statist. Phys. 91:95-124 (1998).

    Google Scholar 

  5. C. Bezuidenhout and G. Grimmett, The critical contact process dies out, Ann. Probab. 18:1462-1482 (1990).

    Google Scholar 

  6. C. Bezuidenhout and G. Grimmett, Exponential decay for subcritical contact and percolation processes, Ann. Probab. 19:984-1009 (1991).

    Google Scholar 

  7. C. Borgs, J. T. Chayes, H. Kesten, and J. Spencer, Uniform boundedness of critical crossing probabilities implies hyperscaling, Random Struct. Alg. 15:368-413 (1999).

    Google Scholar 

  8. J. T. Chayes and L. Chayes, On the upper critical dimension of Bernoulli percolation, Commun. Math. Phys. 113:27-48 (1987).

    Google Scholar 

  9. R. Durrett, Lecture Notes on Particle Systems and Percolation (Wadsworth & Brooks/Cole, 1988).

  10. G. Grimmett and P. Hiemer, Directed percolation and random walk, preprint (2001).

  11. T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions, Commun. Math. Phys. 128:333-391 (1990).

    Google Scholar 

  12. T. E. Harris, Contact interactions on a lattice, Ann. Probab. 2:969-988 (1974).

    Google Scholar 

  13. R. van der Hofstad and G. Slade, A generalised inductive approach to the lace expansion, to appear in Probab. Theory Related Fields.

  14. R. van der Hofstad and G. Slade, Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimension, preprint (2001).

  15. T. M. Liggett, Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes (Springer-Verlag, 1999).

  16. B. G. Nguyen and W.-S. Yang, Triangle condition for oriented percolation in high dimensions, Ann. Probab. 21:1809-1844 (1993).

    Google Scholar 

  17. B. G. Nguyen and W.-S. Yang, Gaussian limit for critical oriented percolation in high dimensions, J. Statist. Phys. 78:841-876 (1995).

    Google Scholar 

  18. A. Sakai, Mean-field critical behavior for the contact process, J. Statist. Phys. 104:111-143 (2001).

    Google Scholar 

  19. H. Tasaki, Geometric critical exponent inequalities for general random cluster models, J. Statist. Phys. 49:841-847 (1987).

    Google Scholar 

  20. H. Tasaki, Hyperscaling inequalities for percolation, Commun. Math. Phys. 113:49-65 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, A. Hyperscaling Inequalities for the Contact Process and Oriented Percolation. Journal of Statistical Physics 106, 201–211 (2002). https://doi.org/10.1023/A:1013197011935

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013197011935

Navigation