Skip to main content
Log in

Analysis and simulation of land-use change in the central Arizona – Phoenix region, USA

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

To understand how urbanization has transformed the desert landscape in the central Arizona – Phoenix region of the United States, we conducted a series of spatial analyses of the land-use pattern from 1912–1995. The results of the spatial analysis show that the extent of urban area has increased exponentially for the past 83 years, and this urban expansion is correlated with the increase in population size for the same period of time. The accelerating urbanization process has increased the degree of fragmentation and structural complexity of the desert landscape. To simulate land-use change we developed a Markov-cellular automata model. Model parameters and neighborhood rules were obtained both empirically and with a modified genetic algorithm. Land-use maps for 1975 and 1995 were used to implement the model at two distinct spatial scales with a time step of one year. Model performance was evaluated using Monte-Carlo confidence interval estimation for selected landscape pattern indices. The coarse-scale model simulated the statistical patterns of the landscape at a higher accuracy than the fine-scale model. The empirically derived parameter set poorly simulated land-use change as compared to the optimized parameter set. In summary, our results showed that landscape pattern metrics (patch density, edge density, fractal dimension, contagion) together were able to effectively capture the trend in land-use associated with urbanization for this region. The Markov-cellular automata parameterized by a modified genetic algorithm reasonably replicated the change in land-use pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T. F. H. and Starr, T. B. 1982. Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago, Illinois, USA.

    Google Scholar 

  • Asner, G. P., Wessman, C.A. and Schimel, D.S. 1998. Heterogeneity of savanna canopy structure and function from imaging spectrometry and inverse modeling. Ecol. Applic. 8: 1022–1036.

    Google Scholar 

  • Baker, W. L. 1989. A review of models of landscape change. Landsc. Ecol. 2: 111–133.

    Google Scholar 

  • Buckland, S. T. 1984. Monte Carlo confidence intervals. Biometrics 40: 811–117.

    Google Scholar 

  • Chomitz, K. M. and Gray, D. A. 1995. Roads, land, markets and deforestation: A spatial model of land use in Belize. World Bank Econ. Rev. 10: 487–512.

    Google Scholar 

  • Ciret, C. and A. Henderson-Sellers. 1989. Sensitivity of ecosystem models to the spatial resolution of the NCAR community climate model CCM2. Climate Dynamics 14: 409–429.

    Google Scholar 

  • Clark, K. C., Hoppen, S. and Gaydos, L. 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Planning B: Planning Design 24: 247–261.

    Google Scholar 

  • Cohen, J. E. 1995. Population growth and earth's human carrying capacity. Science 269: 341–346.

    Google Scholar 

  • Costanza, R. and T. Maxwell. 1994. Resolution and predictability: An approach to the scaling problem. Landsc. Ecol. 9: 47–57.

    Google Scholar 

  • Dale, V. H., O'Neill, R. V., Southworth, F., Pedlowski, M. 1994a. Modeling effects of land management in the Brazilian Amazonian settlement of Rondonia. Cons. Biol. 8: 196–206.

    Google Scholar 

  • Dale, V. H., Pearson, S. M., Offerman, H. L. and O'Neill, R. V. 1994b. Relating patterns of land use change to faunal biodiversity in the central Amazon. Cons. Biol. 8: 1027–1036.

    Google Scholar 

  • Fahrig, L. and Merriam, G. 1994. Conservation of fragmented populations. Cons. Biol. 8: 50–59.

    Google Scholar 

  • Flamm, R. O. and Turner, M. G. 1994. Alternative model formulations for a stochastic simulation of landscape change. Landsc. Ecol. 9: 37–46.

    Google Scholar 

  • Forman, R. T. T. and Alexander, L. E. 1998. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29: 207–231.

    Google Scholar 

  • Gammage, G. 1999. Phoenix in perspective: Reflection on developing the desert. Herberger Center for Design Excellence, Arizona State University, Tempe, Arizona, USA.

    Google Scholar 

  • Gloor, M., S. M. Fan, S. Pacala, and J. Sarmiento. 2000. Optimal sampling of the atmosphere for purpose of inverse modeling. Global Biogeochem. Cycles 14: 407–428.

    Google Scholar 

  • Hilbourn, R. and Mangel, M. 1997. The ecological detective: Confronting models with data. Princeton University Press, Princeton, New Jersey, USA.

    Google Scholar 

  • Hobbs, R. J. 1993. Effects of landscape fragmentation on ecosystem processes in the Western Australian wheat belt. Biol. Cons. 64: 193–201.

    Google Scholar 

  • Hogweg, P. 1988. Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 27: 81–100.

    Google Scholar 

  • Jelinski, D. E. and Wu J. 1996. The modifiable areal unit problem and implications for landscape ecology. Landsc. Ecol. 11: 129–140.

    Google Scholar 

  • Kauffman, S. A. 1993. Origins of Order: Self-organization and selection in evolution. Oxford University Press, New York, NY, USA.

    Google Scholar 

  • Kirtland D., DeCola, L., Gaydos, W, Acevedo, K, Clarke and Bell C. 1994. An analysis of human — induced land transformations in the San Francisco Bay/Sacramento area. World Res. Rev. 6: 206–217.

    Google Scholar 

  • Knowles-Yanez, K., Morizt, C., Fry, J., Bucchin, M., Redman, C. L. and McCartney, P. 1999. Historic land use team: Phase I report on generalized landuse. Central Arizona — Phoenix LTER: Phoenix, Arizona, USA.

    Google Scholar 

  • Lal, R. 2000. Soil management in the developing countries. Soil Sci. 165: 57–72.

    Google Scholar 

  • Landis, J. D. 1995. Imagining land use futures: Applying the California urban futures model. J. Am. Planning Assoc. 61: 438–457.

    Google Scholar 

  • McGarigal, K. and B. Marks. 1995. Fragstats: Spatial Pattern analysis program for quantifying landscape structure. USDA Forest Service — General Technical Report PNW-GTR-351.

  • Mitchell, M. 1996. An introduction to genetic algorithms. MIT Press, Cambridge, MA, USA.

    Google Scholar 

  • Mitchell, M. and Taylor, C. E. 1999. Evolutionary computation: An overview. Annu. Rev. Ecol. Syst. 30: 593–616.

    Google Scholar 

  • O'Neill, R. V., DeAngelis, D. L., Waide, J. B. and Allen, T. F. H. 1986. A hierarchical concept of ecosystems. Princeton University press, Princeton, NJ, USA.

    Google Scholar 

  • Peterjohn and Correll. 1984. Nutrient dynamics in an agricultural watershed. Observations on the roles of a riparian forest. Ecology 65: 1466–1475.

    Google Scholar 

  • Pickett, S. T. A., Burch, W. R. Jr., Dalton, S. E., Foresman, T. W., Grove, J.M. and Rowntree, R. 1997. A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosyst. 1: 185–199.

    Google Scholar 

  • Poeter, E. P. and Hill, M. C. 1997. Inverse models: A necessary next step in ground-water modeling. Ground Water 35: 250–260.

    Google Scholar 

  • Redman, C. L. 1992. The impact of food production: short-term strategies and long-term consequences. In Human Impact on the Environment. Edited by Jacobsen and Firor, Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Riebsame, W. E., Parton, W. J., Galvin, K. A., Burke, I. C., Bohren, L., Young, R. and Knop, E. 1994. Integrated modeling of land use and cover change. Bioscience 44: 350–356.

    Google Scholar 

  • Simpson, J. R. 1993. Urbanization, agro-ecological zones and food production sustainability. Outlook Agric. 22: 233–239.

    Google Scholar 

  • Turner, M. G. 1987. Spatial simulation of landscape changes in Georgia: A comparison of three transition models. Landsc. Ecol. 1: 29–36.

    Google Scholar 

  • Turner, M. G. 1988. A spatial simulation model of land use change in a Piedmont county in Georgia. Appl. Math. Computing 27: 39–51.

    Google Scholar 

  • Turner, M. G., Costanza, R. and Sklar, F. H. 1989. Methods to evaluate the performance of spatial simulation models. Ecol. Modelling 48: 1–18.

    Google Scholar 

  • Turner, M. G., D. N. Wear and R. O. Flamm. 1996. Land ownership and land-cover change in the southern Appalachian highlands and the Olympic Peninsula. Ecol. Applic. 6: 1150–1172.

    Google Scholar 

  • Vitousek, P. M. 1994. Beyond global warming: Ecology and global change. Ecology 75: 1861–1876.

    Google Scholar 

  • Wallin, D. O., Swanson, F. J. and Marks, B. 1994. Landscape pattern response to changes in pattern generation rules: Land use legacies in forestry. Ecol. Applic. 4: 569–580.

    Google Scholar 

  • Warren, A., Sud, Y. C. and Rozanov, B. 1996. The future of deserts. J. Arid Environ. 32: 75–89.

    Google Scholar 

  • Wear, D. N. and Bolstad, P. 1998. Land-use changes in Southern Appalachian landscapes: Spatial analysis and forecast evaluation. Ecosystems 1: 575–594.

    Google Scholar 

  • Wear, D. N., Turner M. G. and Flamm, R. O. 1996. Ecosystem management with multiple owners: Landscape dynamics in a southern Appalachian watershed. Ecol. Applic. 6: 1173–1188.

    Google Scholar 

  • With, K. A. and Crist, T. O. 1995. Critical thresholds in species' responses to landscape structure. Ecology 76: 2446–2459.

    Google Scholar 

  • Wu, F. 1998. Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system. J. Environ. Manag. 53: 293–308.

    Google Scholar 

  • Wu, J. 1999. Hierarchy and scaling: Extrapolating information along a scaling ladder. Can. J. Remote Sensing 25: 367–380.

    Google Scholar 

  • Wu, J. and Loucks, O. L. 1995. From balance-of-nature to hierarchical patch dynamics: A paradigm shift in ecology. Quart. Rev. Biol. 70: 439–466.

    Google Scholar 

  • Wu, J. W. Gao, and Tueller. 1997. Effects of changing spatial scale on the results of statistical analysis with landscape data: A case study. Geogr. Inf. Systems 3: 30–41.

    Google Scholar 

  • Wu, J., Vankat, J. L. and Barlas, Y. 1993. Effects of patch connectivity and arrangement on animal metapopulation dynamics: A simulation study. Ecol. Modelling 65: 221–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenerette, G.D., Wu, J. Analysis and simulation of land-use change in the central Arizona – Phoenix region, USA. Landscape Ecology 16, 611–626 (2001). https://doi.org/10.1023/A:1013170528551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013170528551

Navigation