Skip to main content
Log in

Extending and refining the nuclear mass surface with ISOLTRAP and MISTRAL

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Through the nuclear binding energy, the atomic mass gives us important information about nuclear structure. Viewing the ensemble of mass data over the nuclear chart, we can examine the hills and valleys that form this surface and make hypotheses about the effects of certain nuclear configurations. To unveil these effects, mass measurements of very high precision (<10−6) are required. Two experiments at ISOLDE pursue this effort of nuclear cartography: the tandem Penning trap spectrometer ISOLTRAP and the radiofrequency transmission spectrometer MISTRAL. Between them, the masses of almost 150 nuclides have been measured from stable isotopes to those with half-lives as short as 30 ms. Both experiments rely on good optical properties of a low energy ion beam and are thus well suited to the ISOLDE facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Audi and A.H. Wapstra, Nuclear Phys. A 565 (1993) 1;595 (1995) 409.

    Article  ADS  Google Scholar 

  2. A. Jokinen et al., Hyp. Interact. 129 (2000), this issue.

  3. S. Goriely and M. Arnould, Astron. Astrophys. 312 (1996) 327.

    ADS  Google Scholar 

  4. K.-L. Kratz et al., Ap. J. 403 (1993) 216 and Hyp. Interact. 129 (2000), this issue.

    Article  ADS  Google Scholar 

  5. W. Mittig, A. Lépine-Szily and N.A. Orr, Ann. Rev. Nucl. Sci. 47 (1997) 27.

    Article  ADS  Google Scholar 

  6. G. Bollen, Nuclear Phys. A 626 (1997) 297c.

    Article  ADS  Google Scholar 

  7. G. Bollen et al., Nucl. Instrum. Methods A 368 (1996) 675.

    Article  ADS  Google Scholar 

  8. D. Beck et al., Nucl. Instrum. Methods B 126 (1997) 378.

    Article  Google Scholar 

  9. R.B. Moore et al., to be published.

  10. H. Raimbault-Hartmann et al., Nucl. Instrum. Methods B 126 (1997) 374.

    Article  Google Scholar 

  11. G. Bollen et al., J. Appl. Phys. 68 (1990) 4355.

    Article  ADS  Google Scholar 

  12. G. Savard et al., Phys. Lett. A 158 (1991) 247.

    Article  ADS  Google Scholar 

  13. M. Koenig et al., Internat. J. Mass Spec. Ion. Proc. 142 (1995) 95.

    Article  Google Scholar 

  14. D. Beck et al., Nuclear Phys. A 626 (1997) 343c.

    Article  ADS  Google Scholar 

  15. J.L. Wood, Phys. Rep. 215 (1992) 101.

    Article  ADS  Google Scholar 

  16. G. Ulm et al., Z. Phys. A 325 (1986) 2471.

    Google Scholar 

  17. G. Passler et al., Nuclear Phys. A 580 (1994) 173.

    Article  ADS  Google Scholar 

  18. T. Hilberath et al., Z. Phys. A 342 (1992) 1.

    Article  Google Scholar 

  19. A. Garcia et al., Hyp. Interact. 129 (2000), this issue.

  20. D. Lunney et al., Hyp. Interact. 99 (1996) 105.

    Article  Google Scholar 

  21. M. de Saint Simon et al., Phys. Scripta T 59 (1995) 406.

    ADS  Google Scholar 

  22. C. Toader, Doctoral thesis, Universit´e de Paris-Sud (1999).

  23. C. Thibault et al., Phys. Rev. C 12 (1975) 644.

    Article  ADS  Google Scholar 

  24. D.J. Vieira et al., Phys. Rev. Lett. 57 (1986) 3253.

    Article  ADS  Google Scholar 

  25. A. Coc et al., Nucl. Instrum. Methods A 271 (1988) 512.

    Article  ADS  Google Scholar 

  26. A. Coc et al., Nucl. Instrum. Methods A 305 (1991) 143.

    Article  ADS  Google Scholar 

  27. X.G. Zhou et al., Phys. Lett. B 260 (1991) 285.

    Article  ADS  Google Scholar 

  28. N.A. Orr et al., Phys. Lett. B 258 (1991) 29.

    Article  ADS  Google Scholar 

  29. M.D. Lunney and R.B. Moore, Int. J. Mass Spectrom. (1999) in press.

  30. http://www.jyu.fi/~armani/exotraps/frames.htm.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunney, D., Bollen, G. Extending and refining the nuclear mass surface with ISOLTRAP and MISTRAL. Hyperfine Interactions 129, 249–269 (2000). https://doi.org/10.1023/A:1012698824893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012698824893

Keywords

Navigation