Skip to main content
Log in

The REX-ISOLDE project

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The Radioactive Beam Experiment REX-ISOLDE [1–3] is a pilot experiment at ISOLDE (CERN) testing the new concept of post acceleration of radioactive ion beams by using charge breeding of the ions in a high charge state ion source and the efficient acceleration of the highly charged ions in a short LINAC using modern ion accelerator structures. In order to prepare the ions for the experiments singly charged radioactive ions from the on-line mass separator ISOLDE will be cooled and bunched in a Penning trap, charge bred in an electron beam ion source (EBIS) and finally accelerated in the LINAC. The LINAC consists of a radiofrequency quadrupole (RFQ) accelerator, which accelerates the ions up to 0.3 MeV/u, an interdigital H-type (IH) structure with a final energy between 1.1 and 1.2 MeV/u and three seven gap resonators, which allow the variation of the final energy. With an energy of the radioactive beams between 0.8 MeV/u and 2.2 MeV/u a wide range of experiments in the field of nuclear spectroscopy, astrophysics and solid state physics will be addressed by REX-ISOLDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Habs et al., Nuclear Phys. A 616 (1997) 29c.

    Article  ADS  Google Scholar 

  2. D. Habs et al., Nucl. Instrum. Methods B 126 (1997) 218.

    Article  ADS  Google Scholar 

  3. D. Habs et al., Nucl. Instrum. Methods B 139 (1998) 128.

    Article  ADS  Google Scholar 

  4. European radioactive beam facilities, Statement by NuPECC, Report by study group (May 1993).

  5. Proc. of the 2nd Conf. on Radioactive Nuclear Beams, Louvain-la-Neuve, Belgium (August 1991), ed. Th. Delbar (Adam Hilger, Bristol, 1992).

    Google Scholar 

  6. Proc. of the 3rd Internat. Conf. on Radioactive Nuclear Beams, East Lansing, MI (May 1993), ed. D.J. Morrissey (Editions Frontières, Gif-sur-Yvette, France, 1993).

    Google Scholar 

  7. Proc. of the 4th Internat. Conf. on Radioactive Nuclear Beams, Omya, Japan (June 1996), Nuclear Phys. A 616 (1996).

  8. EU-network EURISOL, proposal to the EU, No. HPRI-1999–50016.

  9. B. Jonson et al., Nucl. Phys. News 3 (1993) 5.

    Google Scholar 

  10. U. Köster, O. Kester and D. Habs, Rev. Sci. Instrum. 69 (1998) 1316.

    Article  ADS  Google Scholar 

  11. Charge breeding of intense radioactive beams, Proposal to the EU for the 5th Framework Programme, No. HPRI-1999–50004.

  12. J. Dobaczewski et al., Phys. Rev. Lett. 72 (1994) 981.

    Article  ADS  Google Scholar 

  13. B. Jonson et al., Proposal to the ISOLDE committee, CERN/ISC 98–23.

  14. D. Forkel-Wirth et al., Letter of intent to the ISOLDE committee CERN/ISC 94–27.

  15. R. Becker, in: Handbook of Ion Sources, ed. B. Wolf (Springer, Berlin, 1995).

    Google Scholar 

  16. R. Rao, D. Habs, O. Kester, K. Rudolph and T. Sieber, in: Proc. of the EPAC'98, Stockholm (June 22–26, 1998).

  17. R. Rao et al., Nucl. Instrum. Methods A 427 (1999) 170.

    Article  ADS  Google Scholar 

  18. G. Bollen et al., Nucl. Instrum. Methods A 368 (1996) 675.

    Article  ADS  Google Scholar 

  19. G. Savard et al., Phys. Lett. A 158 (1991) 247.

    Article  ADS  Google Scholar 

  20. H. Raimbault-Hartmann et al., Nucl. Instrum. Methods B 126 (1997) 378.

    Article  Google Scholar 

  21. F. Ames et al., in: Proc. of the ENAM'98, Bellaire, USA (June 23–27, 1998), AIP Conference Proceedings, Vol. 455 (1998) 927.

    ADS  Google Scholar 

  22. M. König et al., Internat. J. Mass Spect. Ion Processes 142 (1995) 95.

    Article  Google Scholar 

  23. F. Wenander, Lic. thesis, Chalmers University of Technology, Sweden (1998).

  24. E. Beebe et al., Nucl. Instrum. Methods B 93 (1994) 378.

    Article  ADS  Google Scholar 

  25. B. Visentin et al., Nucl. Instrum. Methods B 101 (1995) 275.

    Article  ADS  Google Scholar 

  26. A.O. Nier and T.R. Roberts, Phys. Rev. 81 (1951) 507.

    Article  ADS  Google Scholar 

  27. W. Bleuel, B. Langenbeck, U. Ratzinger and R. Stenner, GSI Scientific Report 1989, GSI 90–1, p. 340.

  28. D. Warner et al., CERN heavy-ion facility design report, CERN 93–01 (1993).

  29. I.M. Kapchinskij and V.A. Teplyakov, Prib. Tekh., Eksp. 4(17) and 4(19) (1970).

  30. A. Schempp et al., Nucl. Instrum. Methods B 10/11 (1985) 831.

    Article  ADS  Google Scholar 

  31. A. Schempp, in: Proc. of the EPAC I (1988) p. 464.

  32. J. Friedrich et al., in: Proc. of the IEEE PAC (1991) p. 3044.

  33. C.-M. Kleffner et al., in: Proc. of the EPAC (1992) p. 1340.

  34. U. Ratzinger, Il Nuovo Cimento A 106 (1993) 1583.

    Article  ADS  Google Scholar 

  35. U. Ratzinger, N. Angert and J. Klabunde, GSI Scientific Report 1987.

  36. B. Keil, Diploma thesis, München (1997).

  37. R. von Hahn et al., Nucl. Instrum. Methods A 328 (1993) 270.

    Article  ADS  Google Scholar 

  38. H. Podlech et al., Nucl. Instrum. Methods B 139 (1998) 447.

    Article  ADS  Google Scholar 

  39. H. Podlech, Ph.D. thesis, University of Heidelberg (1999).

  40. K. Kruglov et al., submitted for publication to Nucl. Instrum. Methods.

  41. J. Cub, C. Gund, D. Pansegrau, G. Schrieder and H. Stelzer, submitted to Nucl. Instrum. Methods A.

  42. Workshop on Physics with a Germanium-Mini-Ball, MPI für Kernphysik, Heidelberg (May 24–26, 1995).

  43. J. Eberth et al., Nucl. Instrum. Methods A 369 (1996) 135.

    Article  ADS  Google Scholar 

  44. http://www.bl.physik.uni-muenchen.de/marabou/html/MARaBOU.html.

  45. H.Essel, N. Kurz et al., The GSI multi-branch system, http://www-gsi-vms.gsi.de/daq/home.html.

  46. R. Brun, F. Rademakers et al., The ROOT object oriented framework, <http://root.cern>.ch.

  47. T. Motobayashi et al., Phys. Lett. B 346 (1995) 9.

    Article  ADS  Google Scholar 

  48. M.M. Sharma et al., Phys. Rev. Lett. 72 (1994) 1431.

    Article  ADS  Google Scholar 

  49. J.L. Wood et al., Phys. Rep. 215 (1992) 103.

    Article  ADS  Google Scholar 

  50. H. Scheit et al., Phys. Rev. Lett. 77 (1996) 3967.

    Article  ADS  Google Scholar 

  51. T. Glasmacher et al., Phys. Lett. B 395 (1997) 163.

    Article  ADS  Google Scholar 

  52. R. Ibbotson et al., Phys. Rev. Lett. 80 (1998) 2081.

    Article  ADS  Google Scholar 

  53. B. Pritychenko et al., Phys. Lett. B 461 (1999) 322.

    Article  ADS  Google Scholar 

  54. R. Ibbotson et al., Phys. Rev. C 59 (1999) 642.

    Article  ADS  Google Scholar 

  55. P.G. Hansen, A.S. Jensen and B. Jonson, Ann. Rev. Nucl. Part. Sci. 45 (1995) 591.

    Article  ADS  Google Scholar 

  56. I. Tanihata, J. Phys. G 22 (1996) 157.

    Article  ADS  Google Scholar 

  57. B. Jonson and K. Riisager, Phil. Trans. Roy. Soc. London A 356 (1998) 2063.

    ADS  Google Scholar 

  58. M. Thoennesen et al., Phys. Rev. C 59 (1999) 111.

    Article  ADS  Google Scholar 

  59. F. Ajzenberg-Selove, Nuclear Phys. A 598 (1988) 1.

    Article  ADS  Google Scholar 

  60. A.A. Korshenninikov et al., Phys. Rev. Lett. 82 (1999) 3581.

    Article  ADS  Google Scholar 

  61. M.V. Zhukov et al., Phys. Rev. C 50 (1995) R1.

    Article  ADS  Google Scholar 

  62. L. Axelsson et al., Phys. Rev. C 54 (1996) R1511.

    Article  ADS  Google Scholar 

  63. T. Baumann et al., Phys. Lett. B 439 (1998) 256.

    Article  ADS  Google Scholar 

  64. K.L. Kratz et al., Ap. J. 402 (1993) 216.

    Article  ADS  Google Scholar 

  65. L. van Wormer et al., Ap. J. 432 (1994) 326.

    Article  ADS  Google Scholar 

  66. F.K. Thielemann et al., Nuclear Phys. A 570 (1994) 329.

    Article  ADS  Google Scholar 

  67. M. Wiescher et al., CERN/ISC 94–21, ISC/I 11.

  68. D. Forkel-Wirth et al., CERN/ISC94–27, ISC/I 13.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habs, D., Kester, O., Sieber, T. et al. The REX-ISOLDE project. Hyperfine Interactions 129, 43–66 (2000). https://doi.org/10.1023/A:1012650908964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012650908964

Navigation