Skip to main content
Log in

Percolation of the Loss of Tension in an Infinite Triangular Lattice

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a new class of bootstrap percolation models where the local rules are of a geometric nature as opposed to simple counts of standard bootstrap percolation. Our geometric bootstrap percolation comes from rigidity theory and convex geometry. We outline two percolation models: a Poisson model and a lattice model. Our Poisson model describes how defects--holes is one of the possible interpretations of these defects--imposed on a tensed membrane result in a redistribution or loss of tension in this membrane; the lattice model is motivated by applications of Hooke spring networks to problems in material sciences. An analysis of the Poisson model is given by Menshikov et al. (4) In the discrete set-up we consider regular and generic triangular lattices on the plane where each bond is removed with probability 1−p. The problem of the existence of tension on such lattice is solved by reducing it to a bootstrap percolation model where the set of local rules follows from the geometry of stresses. We show that both regular and perturbed lattices cannot support tension for any p<1. Moreover, the complete relaxation of tension--as defined in Section 4--occurs in a finite time almost surely. Furthermore, we underline striking similarities in the properties of the Poisson and lattice models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. H. Schonmann, Critical points of two-dimensional bootstrap percolation-like cellular automata, J. Stat. Phys. 58:1239–1244 (1990).

    Google Scholar 

  2. R. Schonmann, On the behavior of some cellular automata related to bootstrap percolation, Ann. Probab. 20:174–193 (1992).

    Google Scholar 

  3. T. S. Mountford, Critical length for semi-oriented bootstrap percolation, Stoch. Proc. Appl. 56:185–205 (1995).

    Google Scholar 

  4. M. Menshikov, K. Rybnikov, and S. Volkov, Loss of Tension in an Infinite Membrane with Holes Distributed by Poisson Law, Fields Institute preprint, Toronto (1999); math.PR/9909187.

    Google Scholar 

  5. W. Tang and M. F. Thorpe, Phys. Rev. B 36:3798–3804 (1997).

    Google Scholar 

  6. W. Tang and M. F. Thorpe, Phys. Rev. B 37:5539–5551 (1998).

    Google Scholar 

  7. A. Bezdek, K. Bezdek, and R. Connelly, Finite and uniform stability of sphere packings, Discrete Comput. Geom. 20(1):111–130 (1998).

    Google Scholar 

  8. A. E. Holroyd, Existence and uniqueness of infinite component in generic rigidity percolation, Annals of Applied Probability 8:944–973 (1998).

    Google Scholar 

  9. A. E. Holroyd, Rigidity Percolation and Boundary Conditions, preprint (2000).

  10. G. Grimmett, Percolation (Springer Verlag, New York, 1999).

    Google Scholar 

  11. R. Connelly, Juxtapositions rigides de cercles et de spheres. I. Juxtapositions finies. [Rigid circle and sphere packings. I. Finite packings], Dual French–English text. Structural Topology No. 14, pp. 43–60 (1988).

  12. R. Connelly, Rigidity and energy, Invent. Math. 66(1):11–33 (1982).

    Google Scholar 

  13. R. Connelly, Rigidity, in Handbook of Discrete Geometry (Elsevier, 1993).

  14. R. Connelly and W. Whiteley, Second order rigidity and prestress stability for tensegrity frameworks, SIAM J. Discrete Math. 9:453–491 (1996).

    Google Scholar 

  15. D. Jacobs and M. F. Thorpe, Generic rigidity percolation: The pebble game, Phys. Rev. Lett. 75:4051 (1995).

    Google Scholar 

  16. D. Jacobs and M. F. Thorpe, Generic rigidity in two dimensions, Phys. Rev. E 53:3682 (1996).

    Google Scholar 

  17. B. Roth and W. Whiteley, Tensegrity frameworks, Trans. Amer. Math. Soc. 265:419–446 (1981).

    Google Scholar 

  18. M. E. Thorpe, J. Non-Cryst. Solids 57:355 (1983).

    Google Scholar 

  19. P. M. Duxbury and M. F. Thorpe (eds.), Proceedings of Workshop “Rigidity Theory and Applications” held at Michigan State University in June of 1998, (1999), Fundamental Materials Science Series, Center for Fundamental Materials Research at Michigan State University.

  20. J. C. Maxwell, On reciprocal diagrams and diagrams of forces, Philosophical Magazine, ser. 4, 27:250–261 (1864).

    Google Scholar 

  21. J. C. Maxwell, On reciprocal diagrams, frames and diagrams of forces, Transactions of the Royal Society of Edinburgh 26:1–40 (1869-72).

    Google Scholar 

  22. L. Cremona, Graphical Statics (1872) (English Translation, Oxford University Press, 1890).

  23. J. Chalupa, P. L. Leath, and G. R. Reich, Bootstrap percolation on Bethe lattice, J. Phys. C 12:31–35 (1979).

    Google Scholar 

  24. P. M. Kogut and P. L. Leath, Bootstrap percolation transitions on real lattices, J. Phys. C 14:3187–3194 (1981).

    Google Scholar 

  25. A. van Enter, Proof of Straley's argument for bootstrap percolation, J. Statist. Phys. 48:943–945 (1987).

    Google Scholar 

  26. M. Aizenman and J. L. Lebowitz, Metastability effects in bootstrap percolation, J. Phys. A 21(19):3801–3813 (1988).

    Google Scholar 

  27. J. Adler, Bootstrap percolation, Physica A 171:453–470 (1991).

    Google Scholar 

  28. P. Dehghanpour and R. H. Schonmann, A nucleation-and-growth model, Probab. Theory Related Fields 107(1):123–135 (1997).

    Google Scholar 

  29. D. J. Jacobs and B. Hendrickson, An algorithm for two-dimensional rigidity percolation: The pebble game, J. Comput. Phys. 137(2):346–365 (1997). 65Y25 (82C99)

    Google Scholar 

  30. I. Barany and N. P. Dolbilin, A stability property of the densest circle packing, Monash. Math. 106(2):107–114 (1988).

    Google Scholar 

  31. M. Aizenman, H. Kesten, and C. Newman, Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation, Comm. Math. Phys. 111(4):505–531 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connelly, R., Rybnikov, K. & Volkov, S. Percolation of the Loss of Tension in an Infinite Triangular Lattice. Journal of Statistical Physics 105, 143–171 (2001). https://doi.org/10.1023/A:1012282026916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012282026916

Navigation