Siberian Mathematical Journal

, Volume 42, Issue 5, pp 884–892

Reduction from a Semi-Infinite Interval to a Finite Interval of a Nonlinear Boundary Value Problem for a System of Second-Order Equations with a Small Parameter

Authors

  • A. I. Zadorin
    • The Institute of Applied Mathematics of the Far East Division of the
Article

DOI: 10.1023/A:1011959409568

Cite this article as:
Zadorin, A.I. Siberian Mathematical Journal (2001) 42: 884. doi:10.1023/A:1011959409568
  • 32 Views

Abstract

We consider a boundary value problem over a semi-infinite interval for a nonlinear autonomous system of second-order ordinary differential equations with a small parameter at the leading derivatives. We impose certain constraints on the Jacobian under which a solution to the problem exists and is unique. To transfer the boundary condition from infinity, we use the well-known approach that rests on distinguishing the variety of solutions satisfying the limit condition at infinity. To solve an auxiliary Cauchy problem, we apply expansions of a solution in the parameter.

Download to read the full article text

Copyright information

© Plenum Publishing Corporation 2001