Skip to main content
Log in

Anisotropic rotational diffusion in model-free analysis for a ternary DHFR complex

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Model-free analysis has been extensively used to extract information on motions in proteins over a wide range of timescales from NMR relaxation data. We present a detailed analysis of the effects of rotational anisotropy on the model-free analysis of a ternary complex for dihydrofolate reductase (DHFR). Our findings show that the small degree of anisotropy exhibited by DHFR (D||/D=1.18) introduces erroneous motional models, mostly exchange terms, to over 50% of the NH spins analyzed when isotropic tumbling is assumed. Moreover, there is a systematic change in S2, as large as 0.08 for some residues. The significant effects of anisotropic rotational diffusion on model-free motional parameters are in marked contrast to previous studies and are accentuated by lowering of the effective correlation time using isotropic tumbling methods. This is caused by the preponderance of NH vectors aligned perpendicular to the principal diffusion tensor axis and is readily detected because of the high quality of the relaxation data. A novel procedure, COPED (COmparison of Predicted and Experimental Diffusion tensors) is presented for distinguishing genuine motions from the effects of anisotropy by comparing experimental relaxation data and data predicted from hydrodynamic analyses. The procedure shows excellent agreement with the slow motions detected from the axially symmetric model-free analysis and represents an independent procedure for determining rotational diffusion and slow motions that can confirm or refute established procedures that rely on relaxation data. Our findings show that neglect of even small degrees of rotational diffusion anisotropy can introduce significant errors in model-free analysis when the data is of high quality. These errors can hinder our understanding of the role of internal motions in protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akke, M., Liu, J., Cavanagh, J., Erickson, H.P. and Palmer, A.G. (1998) Nat. Struct. Biol., 5, 55–59.

    Google Scholar 

  • Akke, M. and Palmer, A.G. (1996) J. Am. Chem. Soc., 118, 911–912.

    Google Scholar 

  • Akke, M., Brüschweiler, R. and Palmer, A.G. (1993) J. Am. Chem. Soc., 115, 9832–9833.

    Google Scholar 

  • Barbato, G., Ikura, M., Kay, L.E., Pastor, A.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.

    Google Scholar 

  • Bracken, C., Carr, P.A., Cavanagh, J. and Palmer, A.G. (1999) J. Mol. Biol., 285, 2133–2146.

    Google Scholar 

  • Brüschweiler, R., Liao, X. and Wright, P.E. (1995) Science, 268, 886–889.

    Google Scholar 

  • Cannon, W.R., Singelton, S.F. and Benkovic, S.J. (1996) Nat. Struct. Biol., 3, 821–833.

    Google Scholar 

  • Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990b) Biochemistry, 29, 7387–7401.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990a) J. Am. Chem. Soc., 112, 4989–4991.

    Google Scholar 

  • Cordier, F., Caffrey, M., Brutscher, B., Cusanovich, M.A., Marion, D. and Blackledge, M. (1998) J. Mol. Biol., 281, 341–361.

    Google Scholar 

  • de Alba, E., Baber, J.L. and Tjandra, N. (1999) J. Am. Chem. Soc., 121, 4282–4283.

    Google Scholar 

  • Epstein, D.M., Benkovic, S.J. and Wright, P.E. (1995) Biochemistry, 34, 11037–11048.

    Google Scholar 

  • Fairbrother, W.J., Liu, J., Pisacane, P.I., Sliwkowski, M.X. and Palmer, A.G. (1998) J. Mol. Biol., 279, 1149–1161.

    Google Scholar 

  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.

    Google Scholar 

  • Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153–162.

    Google Scholar 

  • Frauenfelder, H. and McMahon, B. (1998) Proc. Natl. Acad. Sci. USA, 95, 4795–4797.

    Google Scholar 

  • Fushman, D. and Cowburn, D. (1998) J. Am. Chem. Soc., 120, 7109–7110.

    Google Scholar 

  • Fushman, D. and Cowburn, D. (1999) J. Biomol. NMR, 13, 139–147.

    Google Scholar 

  • Fushman, D., Cahill, S. and Cowburn, D. (1997) J. Mol. Biol., 266, 173–194.

    Google Scholar 

  • Fushman, D., Tjandra, N. and Cowburn, D. (1998) J. Am. Chem. Soc., 120, 10947–10952.

    Google Scholar 

  • Fushman, D., Tjandra, N. and Cowburn, D. (1999) J. Am. Chem. Soc., 121, 8577–8582.

    Google Scholar 

  • Gagné, S.M., Tsuda, S., Spyracopoulos, L., Kay, L.E. and Sykes, B.D. (1998) J. Mol. Biol., 278, 667–686.

    Google Scholar 

  • Garcia de la Torre, J. and Bloomfield, V.A. (1981) Quart. Rev. Biophys., 14, 81–138.

    Google Scholar 

  • Halle, B. and Wennerström, H. (1981) J. Chem. Phys., 75, 1928–1943.

    Google Scholar 

  • Kay, L.E., Marion, D. and Bax, A. (1989a) J. Magn. Reson., 84, 72–84.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989b) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Korzhnev, D.M., Orekhov, V.Y. and Arseniev, A.S. (1997) J. Magn. Reson., 127, 184–191.

    Google Scholar 

  • Kroenke, C.D., Loria, J.P., Lee, L.K., Rance, M. and Palmer, A.G. (1998) J. Am. Chem. Soc., 120, 7905–7915.

    Google Scholar 

  • Lee, L.K., Rance, M., Chazin, W.J. and Palmer, A.G. (1997) J. Biomol. NMR, 9, 287–298.

    Google Scholar 

  • Lefèvre, J.-F., Dayie, K.T., Peng, J.W. and Wagner, G. (1996) Biochemistry, 35, 2674–2686.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • Luginbühl, P., Pervushin, K.V., Iwai, H. and Wüthrich, K. (1997) Biochemistry, 36, 7305–7312.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, A.G. (1995) J. Mol. Biol., 246, 144–163.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, A.G. (1996) Biochemistry, 35, 16009–16023.

    Google Scholar 

  • Miller, G.P. and Bekovic, S.J. (1998) Biochemistry, 37, 6327–6335.

    Google Scholar 

  • Nicholson, L.K., Kay, L.E., Baldesseri, D.M., Arango, J., Young, P.E. and Torchia, D.A. (1992) Biochemistry, 31, 5253–5263.

    Google Scholar 

  • Orbons, L.P.M., van der Marel, G.A., van Boom, J.H. and Altona, C. (1987) Eur. J. Biochem., 170, 225–239.

    Google Scholar 

  • Palmer, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • Palmer, A.G., Williams, J. and McDermott, A. (1996) J. Phys. Chem., 100, 13293–13310.

    Google Scholar 

  • Palmer, A.G. (2000) http://cpmcnet.columbia.edu/dept/gsas/biochem/labs/palmer/software.html

  • Pascual, J., Pfuhl, M., Rivas, G., Pastore, A. and Nilges, M. (1996) FEBS Lett., 383, 201–207.

    Google Scholar 

  • Pascual, J., Pfuhl, M., Walther, D., Saraste, M. and Nilges, M. (1997) J. Mol. Biol., 273, 740–751.

    Google Scholar 

  • Peng, J. and Wagner, G. (1992) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • Peng, J. and Wagner, G. (1995) Biochemistry, 34, 16733–16752.

    Google Scholar 

  • Phan, I.Q.H., Boyd, J. and Campbell, I.D. (1996) J. Biomol. NMR, 8, 369–378.

    Google Scholar 

  • Sawaya, M.R. and Kraut, J. (1997) Biochemistry, 36, 586–603.

    Google Scholar 

  • Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn. Reson., B105, 211–224.

    Google Scholar 

  • Stivers, J.T., Abeygunawardana, C., Mildvan, A.S. and Whitman, C.P. (1996) Biochemistry, 35, 16036–16047.

    Google Scholar 

  • Stone, M.J., Fairbrother, W.J., Palmer, A.G., Reizer, J., Saier Jr., M.H. and Wright, P.E. (1992) Biochemistry, 31, 4394–4406.

    Google Scholar 

  • Stone, M.J., Chandrasekhar, K., Holmgren, A., Wright, P.E. and Dyson, H.J. (1993) Biochemistry, 32, 426–435.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995b) J. Am. Chem. Soc., 117, 12562–12566.

    Google Scholar 

  • Tjandra, N., Kuboniwa, H., Ren, H. and Bax, A. (1995a) Eur. J. Biochem., 230, 1014–1024.

    Google Scholar 

  • Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996) J. Biomol. NMR, 8, 273–284.

    Google Scholar 

  • Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. and Clore, G.M. (1997) Nat. Struct. Biol., 4, 443–449.

    Google Scholar 

  • Van Tilborg, P.J.A., Mulder, F.A.A., de Backer, M.M.E., Nair, M., van Heerde, E.C., Folkers, G., van der Saag, P.T., Karimi Nejad, Y., Boelens, R. and Kaptein, R. (1999) Biochemistry, 38, 1951–1956.

    Google Scholar 

  • Woessner, D.E. (1962) J. Chem. Phys., 37, 647–654.

    Google Scholar 

  • Yao, S., Hinds, M.G. and Norton, R.S. (1998) J. Magn. Reson., 131, 347–350.

    Google Scholar 

  • Young, L. and Post, C.B. (1996) Biochemistry, 35, 15129–15133.

    Google Scholar 

  • Zheng, Z., Czaplicki, J. and Jardetzky, O. (1995) Biochemistry, 34, 5212–5223.

    Google Scholar 

  • Zhou, H.X., Wlodek, S.T. and McCammon, J.A. (1998) Proc. Natl. Acad. Sci. USA, 95, 9280–9283.

    Google Scholar 

  • Zinn-Justin, S., Berthault, P., Guenneugues, M. and Desvaux, H. (1997) J. Biomol. NMR, 10, 363–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborne, M.J., Wright, P.E. Anisotropic rotational diffusion in model-free analysis for a ternary DHFR complex. J Biomol NMR 19, 209–230 (2001). https://doi.org/10.1023/A:1011283809984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011283809984

Navigation