Skip to main content
Log in

On the Gibbsian Nature of the Random Field Kac Model Under Block-Averaging

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the Kac–Ising model in an arbitrary configuration of local magnetic fields η = \(\left( {\eta _{{\kern 1pt} i} } \right)_{i\;\quad \quad \in \quad {\kern 1pt} \quad \mathbb{Z}^d }\), in any dimension d, at any inverse temperature. We investigate the Gibbs properties of the 'renormalized' infinite volume measures obtained by block averaging any of the Gibbs-measures corresponding to fixed η, with block-length small enough compared to the range of the Kac-interaction. We show that these measures are Gibbs measures for the same renormalized interaction potential. This potential depends locally on the field configuration η and decays exponentially, uniformly in η, for which we give explicit bounds. The construction of the potential is based on a high temperature-type cluster expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. G. Amaro de Matos and J. F. Perez, Fluctuations in the Curie-Weiss Version of the Random Field Ising Model, J. Stat. Phys. 62:587-608 (1990).

    Google Scholar 

  2. J. M. G. Amaro de Matos, A. E. Patrick, and V. A. Zagrebnov, Random Infinite-Volume Gibbs States for the Curie-Weiss Random Field Ising Model, J. Stat. Phys. 66:139-164 (1992).

    Google Scholar 

  3. M. Aizenman and J. Wehr, Rounding Effects of Quenched Randomness on First-Order Phase Transitions, Comm. Math.Phys 130:489-528 (1990).

    Google Scholar 

  4. A. Bovier, The Kac-version of the Sherrington-Kirkpatrick model, J. Stat. Phys. 91:459-474 (1998).

    Google Scholar 

  5. O. Benois, T. Bodineau, and E. Presutti, Large deviations in the van der Waals limit, Stoch. Process. Appl. 75(1):89-104 (1998).

    Google Scholar 

  6. A. Bovier, V. Gayrard, and P. Picco, Distribution of overlap profiles in the onedimensional Kac-Hopfield model, Commun. Math. Phys. 186:323-379 (1997).

    Google Scholar 

  7. L. Bertini, E. N. M. Cirillo, and E. Olivieri, Renormalization-group transformations under strong mixing conditions: Gibbsianness and convergence of renormalized interactions, J. Stat. Phys. 97(5-6):831-915 (1999).

    Google Scholar 

  8. J. Bricmont and A. Kupiainen, Phase transition in the 3d random field Ising model, Comm. Math. Phys. 142:539-572 (1988).

    Google Scholar 

  9. J. Bricmont, A. Kupiainen, and R. Lefevere, Renormalization Group Pathologies and the Definition of Gibbs States, Comm. Math. Phys. 194(2):359-388 (1998).

    Google Scholar 

  10. P. Butta, I. Merola, and E. Presutti, On the validity of the van der Waals theory in Ising systems with long range interactions, Mark. Process. Rel. Fields 3(1):63-88 (1997).

    Google Scholar 

  11. T. Bodineau and E. Presutti, Phase diagram of Ising systems with additional long range forces, Comm. Math. Phys. 189(2):287-298 (1997).

    Google Scholar 

  12. D. C. Brydges, A short course on cluster expansions, in: Phénomènes critiques, systèmes aléatoires, théories de jauge, Part I, II (Les Houches, 1984), pp. 129-183, (North-Holland, Amsterdam, 1986).

    Google Scholar 

  13. A. Bovier and M. Zahradnik, The low-temperature phase of Kac-Ising models, J. Stat. Phys. 87:311-332 (1997).

    Google Scholar 

  14. A. Bovier and M. Zahradnik, A simple inductive approach to the problem of convergence of cluster expansions of polymer models, J. Stat. Phys. 100:765-778 (2000).

    Google Scholar 

  15. A. Bovier and M. Zahradnik, private communication.

  16. M. Cassandro and E. Presutti, Phase transitions in Ising systems with long but finite range interactions, Mark. Process. Rel. Fields 2(2):241-262 (1996).

    Google Scholar 

  17. M. Cassandro, E. Orlandi, and E. Presutti, Interfaces and typical Gibbs configurations for one-dimensional Kac potentials, Probab. Theor. Rel. Fields 96(1):57-96 (1993).

    Google Scholar 

  18. M. Cassandro, E. Orlandi, and P. Picco, Typical configuration for the one dimensional random field Kac model, Ann. Probab. 27:1414-1467 (1999).

    Google Scholar 

  19. R. L. Dobrushin and S. B. Shlosman, "Non-Gibbsian" states and their Gibbs description, Comm. Math. Phys. 200(1):125-179 (1999).

    Google Scholar 

  20. A. C. D. van Enter, The Renormalization-Group peculiarities of Griffiths and Pearce: What have we learned?, in: Mathematical Results in Statistical Mechanics, S. Miracle-Solé, J. Ruiz, and V. Zagrebnov, eds., (Marseille 1998) (World Scientific, 1999), pp. 509-526.

  21. A. C. D. van Enter, R. Fernández, and A. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys. 72:879-1167 (1993).

    Google Scholar 

  22. A. C. D. van Enter, C. Külske, and C. Maes, Comment on: Critical behavior of the randomly spin diluted 2D Ising model: A grand ensemble approach, by R. Kühn, Phys. Rev. Lett. 84:6134 (2000).

    Google Scholar 

  23. R. Fernandez, Measures for lattice systems, Physica A 263:117-130 (1999).

    Google Scholar 

  24. H. O. Georgii, Gibbs Measures and Phase Transitions, Studies in mathematics, vol. 9 (de Gruyter, Berlin, New York, 1988)

    Google Scholar 

  25. C. Külske, Metastates in Disordered Mean-Field Models: Random Field and Hopfield Models, J. Stat. Phys. 88(5/6):1257-1293 (1997).

    Google Scholar 

  26. C. Külske, Metastates in Disordered Mean-Field Models II: The Superstates, J. Stat. Phys. 91(1/2):155-176 (1998).

    Google Scholar 

  27. C. Külske, The continuous spin random field model: Ferromagnetic ordering in d ≥ 3, Rev. Math. Phys. 11(10), 1269-1314 (1999).

    Google Scholar 

  28. C. Külske, Stability for a continuous SOS-interface model in a randomly perturbed periodic potential, subm. to Prob. Theor. Rel. Fields, available at http://www.ma. utexas.edu/mp_arc/, preprint 98-768 (1998).

  29. C. Külske, (Non-) Gibbsianness and Phase Transitions in Random Lattice Spin Models, Markov Proc. Rel. Fields 5:357-383 (1999).

    Google Scholar 

  30. C. Külske, Weakly Gibbsian Representations for joint measures of quenched lattice spin models, to appear in Prob. Theor. Rel. Fields, 119:1-30 (2001).

    Google Scholar 

  31. R. Kotecky and D. Preiss, Cluster expansion for abstract polymer models, Comm. Math. Phys. 103:491-498 (1986).

    Google Scholar 

  32. J. L. Lebowitz and O. Penrose, Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition, J. Math. Phys. 7:98-113 (1966).

    Google Scholar 

  33. J. L. Lebowitz, A. Mazel, and E. Presutti, Liquid-vapor phase transitions for systems with finite-range interactions, J. Stat. Phys. 94(5-6):955-1025 (1999).

    Google Scholar 

  34. C. Maes, F. Redig, S. Shlosman, and A. Van Moffaert, Percolation, path large deviations and weakly Gibbs states, Comm. Math. Phys. 209(2), 517-545 (2000).

    Google Scholar 

  35. A. D. Sokal, Bounds on the complex zeros of (di)-chromatic polynomials and Pottsmodel partition functions, Combinatorics, Probability & Computing 10(1):41-77 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Külske, C. On the Gibbsian Nature of the Random Field Kac Model Under Block-Averaging. Journal of Statistical Physics 104, 991–1012 (2001). https://doi.org/10.1023/A:1010497510308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010497510308

Navigation