Skip to main content
Log in

Sine-Gordon Theory for the Equation of State of Classical Hard-Core Coulomb Systems. I. Low Fugacity Expansion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present an exact field theoretical representation of the statistical mechanics of classical hard-core Coulomb systems. This approach generalizes the usual sine-Gordon theory valid for point-like charges or lattice systems to continuous Coulomb fluids with additional short-range interactions. This formalism is applied to derive the equation of state of the restricted primitive model of electrolytes in the low fugacity regime up to order ρ5/2 (ρ number density). We recover the results obtained by Haga by means of Mayer graphs expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. F. Edwards, Phil. Mag. 4: 1171 (1959).

    Google Scholar 

  2. M. Kac, Phys. Fluids 2: 8 (1959).

    Google Scholar 

  3. A. J. F. Siegert, Physica 26: 530 (1960).

    Google Scholar 

  4. A. G. Moreira, M. M. Telo da Gama, and M. E. Fisher, J. Chem. Phys. 110: 10058 (1999).

    Google Scholar 

  5. P. Debye and E. Hückel, Physik. Z. 24: 185 (1923).

    Google Scholar 

  6. J. E. Mayer, J. Chem. Phys. 18: 1426 (1950).

    Google Scholar 

  7. E. Haga, J. Phys. Soc. Japan 8: 714 (1953).

    Google Scholar 

  8. E. Meeron, J. Chem. Phys. 26: 804 (1957).

    Google Scholar 

  9. R. Abe, Progr. Theoret. Phys. (Kyoto) 22: 213 (1959).

    Google Scholar 

  10. H. L. Friedman, Mol. Phys. 2: 23 (1959).

    Google Scholar 

  11. H. L. Friedman, Ionic Solution Theory (Interscience Publishers, John Wiley & Sons, New York, 1962).

    Google Scholar 

  12. G. R. Stell and J. Lebowitz, J. Chem. Phys. 49: 3706 (1968).

    Google Scholar 

  13. J. Hubbard, Phys. Rev. Lett. 3: 77 (1954).

    Google Scholar 

  14. R. L. Stratonovich, Sov. Phys. Solid State 2: 1824 (1958).

    Google Scholar 

  15. D. C. Brydges and Ph. Martin, J. Stat. Phys. 96: 1163 (1999).

    Google Scholar 

  16. J. Hubbard and P. Schofield, Phys. Lett. 40A: 245 (1972).

    Google Scholar 

  17. N. V. Brilliantov, C. Bagnuls, and C. Bervillier, Phys. Lett. A 245: 274 (1998).

    Google Scholar 

  18. J. Ortner, Phys. Rev. E 59: 6312 (1999).

    Google Scholar 

  19. S. Samuel, Phys. Rev. D 18: 1916 (1978).

    Google Scholar 

  20. B.-Y. Ha and A. J. Liu, Phys. Rev. E 58: 6281 (1998).

    Google Scholar 

  21. R. R. Netz and H. Orland, Eur. Phys. J. E 1: 67 (2000).

    Google Scholar 

  22. J. P. Hansen and I. Mc Donald, Theory of Simple Liquids (Academic, New York, 1986).

    Google Scholar 

  23. J. D. Jackson, Classical Electrodynamics (Wiley, Second Edition, 1975).

  24. S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. Phys. 45, 2102 (1966).

    Google Scholar 

  25. J. P. Hansen, Phys. Rev. A 8: 3096 (1973).

    Google Scholar 

  26. S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London. A 373: 27 (1980).

    Google Scholar 

  27. J. M. Caillol, J. Chem. Phys. 111: 6628 (1999).

    Google Scholar 

  28. B. Cichocki, B. U. Felderhof, and K. Hinsen, Phys. Rev. A 39: 5350 (1989).

    Google Scholar 

  29. J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena (Clarendon Press, Oxford, 1992).

    Google Scholar 

  30. S. K. Ma, Modern Theory of Critical Phenomena (Frontiers in Physics, 46).

  31. G. Parisi, Statistical Field Theory (Addison Wesley, 1988).

  32. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publication, New York, 1972), § 1.12, 229.

    Google Scholar 

  33. S. Bekiranovand M. E. Fisher, Phys. Rev. E 59: 493 (1999).

    Google Scholar 

  34. M. E. Fisher, J. Stat. Phys. 75: 1 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caillol, JM., Raimbault, JL. Sine-Gordon Theory for the Equation of State of Classical Hard-Core Coulomb Systems. I. Low Fugacity Expansion. Journal of Statistical Physics 103, 753–776 (2001). https://doi.org/10.1023/A:1010396502815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010396502815

Navigation