Skip to main content
Log in

A Kinetic Model of Quantum Jumps

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new class of models describing the dissipative dynamics of an open quantum system S by means of random time evolutions of pure states in its Hilbert space ℋ is considered. The random evolutions are linear and defined by Poisson processes. At the random Poissonian times, the wavefunction experiences discontinuous changes (quantum jumps). These changes are implemented by some non-unitary linear operators satisfying a locality condition. If the Hilbert space ℋ of S is infinite dimensional, the models involve an infinite number of independent Poisson processes and the total frequency of jumps may be infinite. We show that the random evolutions in ℋ are then given by some almost-surely defined unbounded random evolution operators obtained by a limit procedure. The average evolution of the observables of S is given by a quantum dynamical semigroup, its generator having the Lindblad form.(1) The relevance of the models in the field of electronic transport in Anderson insulators is emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. Lindblad, Comm. Math. Phys. 48:119 (1976).

    Google Scholar 

  2. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer-Verlag, 1991).

  3. P. Drude, Ann. Physik 1:566 (1900).

    Google Scholar 

  4. H. Schulz-Baldes, Phys. Rev. Lett. 77:2176 (1997).

    Google Scholar 

  5. P. W. Anderson, Phys. Rev. 109:1492 (1958).

    Google Scholar 

  6. J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Let. 68:580 (1992); K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10:524 (1993).

    Google Scholar 

  7. H. Carmichael, An Open System Approach to Quantum Optics (Lecture Notes in Physics m18, Springer-Verlag, 1991).

  8. G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34:470 (1986).

    Google Scholar 

  9. N. Gisin and I. C. Percival, J. Phys. A: Math. Gen. 25:5677 (1992) and references therein.

    Google Scholar 

  10. G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42:78 (1990).

    Google Scholar 

  11. A. Barchielli and V. P. Belavkin, J. Phys. A: Math. Gen. 24:1495 (1991).

    Google Scholar 

  12. V. P. Belavkin, J. Phys. A.: Math. Gen. 22:L1109 (1989).

    Google Scholar 

  13. F. Haake, Statistical Treatment of Open Systems by Generalized Master Equations, Springer tracts in modern physics Vol. 66 (Springer-Verlag, 1973).

  14. S. Nakajima, Progr. Theor. Phys. 20:948 (1958); R. Zwanzig, J. Chem. Phys. 33:1338 (1960).

    Google Scholar 

  15. E. B. Davies, Commun. Math. Phys. 39:91 (1974).

    Google Scholar 

  16. V. Gorini and A. Kossakowski, J. Math. Phys. 17:1298 (1976).

    Google Scholar 

  17. H. Spohn, Rev. Mod. Phys. 53:569 (1980).

    Google Scholar 

  18. J. V. Pulé, Commun. Math. Phys. 38:241 (1974).

    Google Scholar 

  19. K. Hepp and E. H. Lieb, Helv. Phys. Acta 46:573 (1973).

    Google Scholar 

  20. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, second edition (North-Holland, 1992).

  21. W. T. Strunz, Phys. Lett. A 224:25(1996).

    Google Scholar 

  22. L. Diósi and W. T. Strunz, Phys. Lett. A 235:569 (1997).

    Google Scholar 

  23. L. Diósi, N. Gisin, and W. T. Strunz, Phys. Rev. A 58:1699 (1998); W. T. Strunz, L. Diósi, and N. Gisin, Phys. Rev. Lett. 82:1801 (1999).

    Google Scholar 

  24. M. O. Caceres and A. K. Chattah, Physica A 234:322 (1996).

    Google Scholar 

  25. J. Bellissard, A. van Elst, and H. Schulz-Baldes, J. Math. Phys. 35:5373 (1994).

    Google Scholar 

  26. H. Schulz-Baldes and J. Bellissard, J. Stat. Phys. 91:991 (1998).

    Google Scholar 

  27. H. Schulz-Baldes and J. Bellissard, Rev. Math. Phys. 10:1 (1998).

    Google Scholar 

  28. M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70:101 (1998).

    Google Scholar 

  29. A. Einstein, Phys. Zeits 18:121 (1917).

    Google Scholar 

  30. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, 1984).

  31. See M. Aizenman and S. Molchanov, Commun. Math. Phys. 157:245-278 (1993) and references therein.

    Google Scholar 

  32. N. F. Mott, J. Non-Crystal. Solids 1:1 (1968).

    Google Scholar 

  33. W. Mason, S. V. Kravchenko, G. E. Bowker, and J. E. Furneaux, Phys. Rev. B 52:7857 (1995); S. I. Khondaker, I. S. Shlimak, J. T. Nicholls, M. Pepper, and D. A. Ritchie, Phys. Rev. B 59:4580 (1999).

    Google Scholar 

  34. G. Ebert, K. von Klitzing, C. Probst, E. Schuberth, K. Ploog, and G. Weimann, Solid State Comm. 45:625(1983).

    Google Scholar 

  35. J. Delahaye, J. P. Brison, and C. Berger, Phys. Rev. Lett. 98:4204 (1998).

    Google Scholar 

  36. D. Spehner, Ph.D. Thesis, (Université Paul Sabatier, Toulouse, France, 2000).

    Google Scholar 

  37. A. Miller and E. Abrahams, Phys. Rev. 120:745 (1960).

    Google Scholar 

  38. I. N. Kovalenko, N. Y. Kuznetsov, and V. M. Shurenkov, Models of Random Processes: A Handbook for Mathematician and Engineers (CRC press, 1996).

  39. M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. 1-4 (Academic Press, 1975).

  40. K. Kraus, Ann. Phys. 64:311 (1971); K. Kraus, Comm. Math. Phys. 16:142 (1970).

    Google Scholar 

  41. E. B. Davies, Quantum Theory of Open Systems (Academic Press, 1976).

  42. W. F. Stinespring, Proc. Am. Math. Soc. 6:211 (1955).

    Google Scholar 

  43. J. Bellissard, in From Number Theory to Physics, Springer Proceedings in Physics vol. 47, J. M. Luck, P. Moussa, and M. Waldschmidt, eds. (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  44. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. 1 (Spinger-Verlag, 1987).

  45. A. Kossakowski, Rep. Math. Phys. 3, 247 (1972).

    Google Scholar 

  46. E. B. Davies, J. Funct. Analysis 34, 421 (1979).

    Google Scholar 

  47. C. Cohen-Tannoudji, J. Dupond-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, New-York, 1992).

    Google Scholar 

  48. D. R. Grempel, R. E. Prange, and S. Fishman, Phys. Rev. A 29:1639 (1984).

    Google Scholar 

  49. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D. Zeh, Decoherence and the Appearance of the Classical World in Quantum Theory, chap. 8 (Springer-Verlag, 1996).

  50. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1987).

  51. D. Spehner and J. Bellissard, to be published in: Proceedings of the International Conference on Quantum Optics of Santiago, Chile, August 2000, Lecture Notes in Physics, M. Orszag and J. C. Retamal, eds. (Springer-Verlag, 2001).

  52. J. Bellissard, R. Rebolledo, D. Spehner, and W. von Waldenfels, in preparation

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spehner, D., Bellissard, J. A Kinetic Model of Quantum Jumps. Journal of Statistical Physics 104, 525–572 (2001). https://doi.org/10.1023/A:1010320520088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010320520088

Navigation