Skip to main content
Log in

Spatial modelling for binary data using␣a␣hidden conditional autoregressive Gaussian process: a multivariate extension of the probit model

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

A Bayesian approach to modelling binary data on a regular lattice is introduced. The method uses a hierarchical model where the observed data is the sign of a hidden conditional autoregressive Gaussian process. This approach essentially extends the familiar probit model to dependent data. Markov chain Monte Carlo simulations are used on real and simulated data to estimate the posterior distribution of the spatial dependency parameters and the method is shown to work well. The method can be straightforwardly extended to regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, P. S. and McShane, L. M. (1995) Generalized estimating equations approach to spatially correlated data: applications to the analysis of neuroimaging data. Biometrics, 51, 627–38.

    Google Scholar 

  • Besag, J. E. (1975) Statistical analysis of non-lattice data. The Statistician, 24, 179–95.

    Google Scholar 

  • Besag, J. E., Green, P. J., Higdon, D. and Mengersen, K. (1995) Bayesian computation and stochastic systems. Statistical Science, 10, 3–66.

    Google Scholar 

  • Besag, J. E. and Moran, P. A. P. (1975) On the estimation and testing of spatial interaction in Gaussian lattice processes. Biometrika, 62, 555–62.

    Google Scholar 

  • Best, N. G., Cowles, M. K. and Vines, S. K. (1995) CODA Manual version 0.30. MRC Biostatistics Unit, Cambridge, UK.

    Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data, Revised Edi-tion, Wiley, New York.

    Google Scholar 

  • Diggle, P. J., Tawn, J. A. and Moyeed, R. A. (1998) Model-based geostatistics (with discussion). Appl. Statist., 47, 299–350.

    Google Scholar 

  • Gelman, A. and Meng, X.-L. (1998) Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling. Statist. Sci., 13, 163–85.

    Google Scholar 

  • Geyer, C. J. (1991) Markov chain Monte Carlo maximum likeli-hood. Computer Science and Statistics: Proc. 23rd Symp. Interface, 156–63.

  • Geyer, C. J. and Thompson, E. A. (1992) Constrained Monte Carlo maximum likelihood for dependent data. J. Roy. Statist. Soc., B, 657–99.

  • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996) Markov Chain Monte Carlo In Practice, London: Chapman and Hall.

    Google Scholar 

  • Harvey, A. C. and Durbin, J. (1986) The effects of seat belt leg-islation on British road casualties: a case study in structural time series modelling. J. Roy. Statist. Sco., A, 149, 187–227.

    Google Scholar 

  • Hay, J. and Pettitt, A. N. (1998) Bayesian analysis of a Time Series of counts. Submitted to Biometrics.

  • Heidelberger, P. and Welch, P. (1983) Simulation run length control in the presence of an initial transient. Operations Research, 7, 493–97.

    Google Scholar 

  • Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models Biometrika, 87, 561–74.

    Google Scholar 

  • Low Choy, S. (1998) Bayesian hierarchical modelling of two-di-mensional lattice data: a biogeographical case study. Queensland University of Technology PhD thesis.

  • Mengersen, K. L. and Robert, C. P. (1998) MCMC conver-gence diagnostics: a ``revieWWW'', Proceedings of Sixth Valencia International Meeting on Bayesian Statistics, 399–432.

  • Moran, P. A. P. (1973) A Gaussian Markovian process on a square lattice. J. Appl. Prob., 10, 54–62.

    Google Scholar 

  • Pettitt, A. N. and Low Choy, S. (1999) Bivariate binary data with missing values: analysis of a field experiment to investigate chemical attractants of wild dogs. Submitted to J. Agric. Biol. Env. Stats.

  • Stein, M. (1992). Prediction and inference for truncated spatial data. J. Comput. Graph. Statist., 1, 91–110.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weir, I.S., Pettitt, A.N. Spatial modelling for binary data using␣a␣hidden conditional autoregressive Gaussian process: a multivariate extension of the probit model. Statistics and Computing 9, 77–86 (1999). https://doi.org/10.1023/A:1008822429149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008822429149

Navigation