Skip to main content
Log in

Yeast strains to detect genomic deletions induced by carcinogens in cell-cycle arrested cells

  • Published:
Biotherapy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Barrett JC. A multistep model for neoplastic development: a role of genetic and epigenetic changes. In: Barrett JC, ed. Mechanisms of Environmental Carcinoegnesis, vol vn2 Multi-steps models of Carcinogenesis Boca Raton FL: CRC Press, 1987; 117–26.

    Google Scholar 

  2. Cairns J. The origin of human cancers. Nature, 1981; 289: 353–7.

    Google Scholar 

  3. Wintersberger U. Chemical carcinogenesis – the price for DNA repair? Naturwissenschaften 1982; 69: 107–13.

    Google Scholar 

  4. Haluska FG, Tsujimoto Y, Croce CM. Oncogene activation by chromosome translocation in human malignancy. Annu Rev Genet 1987; 21: 321–45.

    Google Scholar 

  5. Varmus HE. The molecular genetics of cellular oncogenes. Annu Rev Genet 1984; 18: 553–612.

    Google Scholar 

  6. Bishop JM. The molecular genetics of cancer. Science, 1987; 235: 305–11.

    Google Scholar 

  7. Hansen MF, Cavanee WK. Tumor suppressors: Recessive mutations that lead to cancer. Cell, 1988; 53: 172–3.

    Google Scholar 

  8. Ponder B. Gene losses in human tumors. Nature, 1988; 335: 400–2.

    Google Scholar 

  9. Mitelman F, Heim S. Chromosome abnormalities in cancer. Cancer Detection and Prevention 1990; 14: 527–37.

    Google Scholar 

  10. Sandberg AA. Chromosome abnormalities in human cancer and leukemia: Mutat. Res., 1991; 247: 231–40.

    Google Scholar 

  11. Barrett JC. Mechanism of multistep carcinogenesis and carcinogen risk assessment. Environm. Health Perpect. 1993; 100: 9–20.

    Google Scholar 

  12. Ramel C. Mutation spectrum in carcinogenicity, In: A. Kappas ed. Mechanosms of Environmental Mutagenesis-Carcinogenesis, New York: Plenum Press, 1990: 1–3.

    Google Scholar 

  13. Wügler FE. Recombination and gene conversion. Mutat Res 1992; 284: 3–14

    Google Scholar 

  14. Meyn MS. High spontaneous intrachromosomal recombination rates in ataxia telangiectasia. Science 1993; 260: 1327–30.

    Google Scholar 

  15. Malkin D, Li FP, Strong LC, Fraumeni JF Jr., Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science, 1990; 250: 1233–8.

    Google Scholar 

  16. Weinert T, Lydall D. Cell cycle checkpoints, genetic instability and cancer, Seminar in Cancer Biol. 1993; 4: 129–40.

    Google Scholar 

  17. Hartwell LH. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 1992a; 71: 543–6.

    Google Scholar 

  18. Murnane JP. Role of induced genetic instability in the mutagenic effects of chemical and radiation. Mutation Res. 1996; 367: 11–23.

    Google Scholar 

  19. Watt PM, Hickson ID. Genome instability: Failure to unwind causes cancer. Current Biology 1996; 6: 265–7.

    Google Scholar 

  20. Yuspa SH, Poirier MC. Chemical carcinogenesis from animal models to molecular models in one decade. Adv Cancer Res 1988; 50: 25–70.

    Google Scholar 

  21. Grisham JW, Kaufmann WK, Kaufman DG. The cell cycle and the chemical carcinogenesis. Surv Synth Path Res 1983; 1: 49–66.

    Google Scholar 

  22. Kaufmann WK, Kaufman DG. Cell cycle control, DNA repair and initiation of carcinogenesis. FASEB J 1993; 7: 1188–91.

    Google Scholar 

  23. Hartwell LH. Role of yeast in cancer research. Cancer 1992b; 69(10): 2615–21.

    Google Scholar 

  24. Schiestl RH, Igarashi S, Hastings PJ. Analysis of the mechanism for reversion of a disrupted gene. Genetics 1988; 119: 237–47.

    Google Scholar 

  25. Schiestl RH. Nonmutagenic carcinogens induce intrachromosomal recombination in yeast. Nature 1989; 337: 285–8.

    Google Scholar 

  26. Schiestl RH, Gietz RD, Mehta RD, Hastings PJ. Carcinogens induce intrachromosomal recombination in yeast. Carcinogenesis 1989; 10: 1445–55.

    Google Scholar 

  27. Schiestl RH. Nonmutagenic carcinogens induce intrachromosomal recombination in dividing yeast cells. Env Health Perspect 1993; In press.

  28. Carls N, Schiestl RH. Evaluation of the yeast DEL assay with ten compounds selected by the International Program on Chemical Safety for the evaluation of short-term tests for carcinogens. Mutat Res 1994; 320: 293–303.

    Google Scholar 

  29. Melnick RL, Huff J, Barrett JC, Maronpot RR, Lucier G, Portier JC. Cell proliferation and Chemical Carcinogenesis: a symposium overview. Mol Carcinog 1993; 7: 135–8.

    Google Scholar 

  30. Pringle JR, Hartwell LH. The Sacchromyces cerevisiae cell cycle, In: Stratern JN, Jones EW, Broach JR (eds), The molecular biology of the Yeast Saccharomyces, Cold Spring Harbor Laboratory. New York: Cold Spring Harbor NY, 1981: 97–142.

    Google Scholar 

  31. Tonaletti S, Pfeifer GP. UV damage and repair mechanisms in mammalian cells. BioEssays 1996; 18: 221–8.

    Google Scholar 

  32. Friedberg EC, Walker GC, Siede W. DNA repair and mutagenesis. ASM Press, Washington, DC: ASM Press, 1995.

    Google Scholar 

  33. Galli A, Schiestl RH. On the mechanism of UV and g-rays-induced intrachromosomal recombination in yeast cells synchronized in different stages of the cell cycle. Mol Gen Genet 1995a; 248: 301–10.

    Google Scholar 

  34. Galli A, Schiestl RH. Salmonella test positive and negative carcinogens show different effect on intrachromosomal recombination in G2 cell cycle arrested yeast cells. Carcinogenesis 1995; 16: 659–63.

    Google Scholar 

  35. IARC (1987) International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans, Supplement 7. Overall evaluation of carcinogenicity: an updating of selected IARC monographs from volume 1–42. Lyon, France.

    Google Scholar 

  36. Arcos JC, Argus MF. Chemical Induction of Cancer, vol II (A & B), New York: Academic Press, 1974.

    Google Scholar 

  37. McCann J, Choi E, Yamasaki E, Ames BN. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc Natl Acad Sci USA, 1975; 72; 5135–9.

    Google Scholar 

  38. De Flora S, Zanacchi P, Camoirano A, Bemecelli C, Badolati GS. Genotoxic activity of 135 compounds in the Ames reversion test and in a bacterial DNA repair test. Mutat Res, 1984; 133: 161–98.

    Google Scholar 

  39. Ashby J, Tennant RW. Definitive relationship among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP, Mutat Res 1992; 275: 229–306.

    Google Scholar 

  40. Kaufmann WK, Paules RS. DNA damage and cell cycle checkpoints. FASEB J 1996; 10: 238–47.

    Google Scholar 

  41. Reddy MV, Randerath K. A comparison of DNA adductd formation in white blood cells and internal organs of mice exposed to benzo(a)pyrene, dibenzo(c,g)carbazole, safrole and cigarette smoke condensate. Mutat Res 1990; 241: 37–48.

    Google Scholar 

  42. Gupta KP, van Golen KL, Putman KL, Randerath K. Formation and persistence of safrole-DNA adducts over a 10,000-fold dose range in mouse liver. Carcinogenesis 1993; 14: 1517–21.

    Google Scholar 

  43. Chan VS, Caldwell J. Comparative induction of unscheduled DNA synthesis in cultured rat hepatocytes by allylbenzenes and their 1 0-hydroxy mrtabolites. Food Chem Toxicol 1992; 30: 8–836.

    Google Scholar 

  44. Foureman P, Mason JM, Valencia R, Zimmering S. Chemical mutagenesis testing in Drosophila. IX. Results of 50 coded compound tested for the National Toxicology Program. Environm. Mol. Mutag., 1994; 23: 51–63.

    Google Scholar 

  45. Zimmermann FK, Mohr A. Formaldehyde, glyoxal, urethane, methyl carbamate, 2,3-butanedione, 2,3-hexanedione, ethyl acrylate, dibromoacetonitrile and 2-hydroxypropionitrile induce loss in Saccharomyces cerevisiae. Mutation Res 1992; 270: 151–66.

    Google Scholar 

  46. Batiste-Alentorn M, Xamena N, Creus A, Marcos R. Genotoxicity studies with the unstable zeste-white (UZ) system of Drosophila melanogasters: Results with 10 carcinogenic compounds. Environm Mol Mutag 1991; 18: 120–5.

    Google Scholar 

  47. Frautz R, Forster R, Hechenberger CM, Hertner T, von der Hude W, Kaufman G, Madle H, Madle S, Miltenburger HG, Muller L et al. Report of comparative study of DNA damage and repair assays in primary rat hepatocytes with five coded chemicals. Mutat Res 1991; 260: 281–94.

    Google Scholar 

  48. Jackson MA, Stack HF, Wates MD. The genetic toxicology of putative nongenotoxic carcinagens. Mutat Res 1993; 296: 241–77.

    Google Scholar 

  49. Eastmond DA. Induction of micronuclei and aneuploidy by the quinone-forming agents benzene and o-phenylphenol. Toxicol Lett 1993; 67: 105–18.

    Google Scholar 

  50. Ward JB Jr, Ammenheuse MM, Ramanujam VM, Morris DL, Whorton EB Jr., Legator MS. The mutagenic effects of low level sub-acute inhalation exposure to benzene in CD-1 mice. Mutat Res 1992; 268: 49–57.

    Google Scholar 

  51. Low LK, Reddy MV, Blackburn GR, Mackerer CR. Final report: Benzene mechanistic research project. Environmental and health laboratory, Mobil Oil Corporation, Princeton NJ.

  52. Klein HL. Genetic control of intrachromosomal recombination. BioEssays 1995; 17: 147–59.

    Google Scholar 

  53. Haber JE. Exploring the pathways of homologous recombination. Curr Opin Cell Biol 1992; 4: 401–12.

    Google Scholar 

  54. Belmaaza A, Chartrand P. One-sided invasion events in homologous recombination at double strand breaks. Mutation Res 1994; 314: 199–208.

    Google Scholar 

  55. Kadyk LC, Hartwell LH. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 1992; 132: 382–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, A., Schiestl, R.H. Yeast strains to detect genomic deletions induced by carcinogens in cell-cycle arrested cells. Biotherapy 11, 129–133 (1998). https://doi.org/10.1023/A:1007978011313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007978011313

Keywords

Navigation