Skip to main content
Log in

Semigroups, Rings, and Markov Chains

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We analyze random walks on a class of semigroups called “left-regular bands.” These walks include the hyperplane chamber walks of Bidigare, Hanlon, and Rockmore. Using methods of ring theory, we show that the transition matrices are diagonalizable and we calculate the eigenvalues and multiplicities. The methods lead to explicit formulas for the projections onto the eigenspaces. As examples of these semigroup walks, we construct a random walk on the maximal chains of any distributive lattice, as well as two random walks associated with any matroid. The examples include a q-analogue of the Tsetlin library. The multiplicities of the eigenvalues in the matroid walks are “generalized derangement numbers,” which may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Abels, H. (1991). The geometry of the chamber system of a semimodular lattice. Order 8(2), 143–158.

    Google Scholar 

  2. Aldous, D. (1999). The Moran process as a Markov chain on leaf-labeled trees, preprint.

  3. Bayer, D., and Diaconis, P. (1992). Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2(2), 294–313.

    Google Scholar 

  4. Bergeron, F., Bergeron, N., Howlett, R. B., and Taylor, D. E. (1992). A decomposition of the descent algebra of a finite Coxeter group. J. Algebraic Combin. 1(1), 23–44.

    Google Scholar 

  5. Bidigare, T. P. (1997). Hyperplane Arrangement Face Algebras and Their Associated Markov Chains, Ph.D. thesis, University of Michigan.

  6. Bidigare, T. P., Hanlon, P., and Rockmore, D. N. (1999). A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements. Duke Math. J. 99(1), 135–174.

    Google Scholar 

  7. Billera, L. J., Brown, K. S., and Diaconis, P. (1999). Random walks and plane arrangements in three dimensions. Amer. Math. Monthly 106(6), 502–524.

    Google Scholar 

  8. Billera, L. J., and Liu, N. Noncommutative enumeration in graded posets. J. Algebraic Combin., to appear.

  9. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., and Ziegler, G. M. (1993). Oriented Matroids, Encyclopedia of Mathematics and Its Applications, Vol. 46, Cambridge University Press, Cambridge.

    Google Scholar 

  10. Brown, K. S. (1989). Buildings, Springer-Verlag, New York.

    Google Scholar 

  11. Brown, K. S., and Diaconis, P. (1998). Random walks and hyperplane arrangements. Ann. Probab. 26(4), 1813–1854.

    Google Scholar 

  12. Désarménien, J. (1983). Une autre interprétation du nombre de dérangements. Sém. Lothar. Combin. 8, Art. B08b, 6 pp. (electronic).

  13. Désarménien, J., and Wachs, M. L. (1993). Descent classes of permutations with a given number of fixed points. J. Combin. Theory Ser. A 64(2), 311–328.

    Google Scholar 

  14. Diaconis, P. From shuffling cards to walking around the building: An introduction to modern Markov chain theory, Proceedings of the 1998 International Congress of Mathematicians, to appear.

  15. Diaconis, P. (1988). Group Representations in Probability and Statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, Vol. 11, Institute of Mathematical Statistics, Hayward, CA.

    Google Scholar 

  16. Diaconis, P., Fill, J. A., and Pitman, J. (1992). Analysis of top to random shuffles. Combin. Probab. Comput. 1(2), 135–155.

    Google Scholar 

  17. Diaconis, P., and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41(1), 45–76 (electronic).

    Google Scholar 

  18. Fill, J. A. (1996). An exact formula for the move-to-front rule for self-organizing lists. J. Theoret. Probab. 9(1), 113–160.

    Google Scholar 

  19. Greene, C. (1973). On the Möbius algebra of a partially ordered set. Advances in Math. 10, 177–187.

    Google Scholar 

  20. Grillet, P. A. (1995). Semigroups. An Introduction to the Structure Theory, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 193, Marcel Dekker Inc., New York.

    Google Scholar 

  21. Grove, L. C., and Benson, C. T. (1985). Finite Reflection Groups, second ed., Graduate Texts in Mathematics, Vol. 99, Springer-Verlag, New York.

    Google Scholar 

  22. Högnäs, G., and Mukherjea, A. (1995). Probability Measures on Semigroups, Plenum Press, New York, Convolution products, random walks, and random matrices.

    Google Scholar 

  23. Humphreys, J. E. (1990). Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge.

    Google Scholar 

  24. Klein-Barmen, F. (1940). Über eine weitere Verallgemeinerung des Verbandsbegriffes. Math. Z. 46, 472–480.

    Google Scholar 

  25. Orlik, P., and Terao, H. (1992). Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften, Vol. 300, Springer-Verlag, Berlin.

    Google Scholar 

  26. Petrich, M. (1971). A construction and a classification of bands. Math. Nachr. 48, 263–274.

    Google Scholar 

  27. Petrich, M. (1977). Lectures in Semigroups, Wiley, London/New York/Sydney.

    Google Scholar 

  28. Phatarfod, R. M. (1991). On the matrix occurring in a linear search problem. J. Appl. Probab. 28(2), 336–346.

    Google Scholar 

  29. Schützenberger, M.-P. (1947). Sur certains treillis gauches. C. R. Acad. Sci. Paris 224, 776–778.

    Google Scholar 

  30. Serre, J.-P. (1977). Linear Representations of Finite Groups, Springer-Verlag, New York; Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42.

    Google Scholar 

  31. Solomon, L. (1967). The Burnside algebra of a finite group. J. Combin. Theory 2, 603–615.

    Google Scholar 

  32. Solomon, L. (1976). A Mackey formula in the group ring of a Coxeter group. J. Algebra 41(2), 255–264.

    Google Scholar 

  33. Stanley, R. P. (1996). Combinatorics and Commutative Algebra, second ed., Progress in Mathematics, Vol. 41, Birkhäuser Boston Inc., Boston, MA.

    Google Scholar 

  34. Stanley, R. P. (1997). Enumerative Combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, Vol. 49, Cambridge University Press, Cambridge, with a foreword by Gian-Carlo Rota, corrected reprint of the 1986 original.

    Google Scholar 

  35. Tits, J. (1974). Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin.

    Google Scholar 

  36. Wachs, M. L. (1989). On q-derangement numbers. Proc. Amer. Math. Soc. 106(1), 273–278.

    Google Scholar 

  37. Welsh, D. J. A. (1976). Matroid Theory, L. M. S. Monographs, No. 8, Academic Press [Harcourt Brace Jovanovich Publishers], London.

    Google Scholar 

  38. Whitney, H. (1935). On the Abstract Properties of Linear Dependence, Amer. J. Math., pp. 509–533; Collected Papers, Vol. I, 147–171.

  39. Zaslavsky, T. (1975). Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc. 1(154), vii+102 pp.

    Google Scholar 

  40. Zaslavsky, T. (1977). A combinatorial analysis of topological dissections. Advances in Math. 25(3), 267–285.

    Google Scholar 

  41. Ziegler, G. M. (1995). Lectures on Polytopes, Graduate Texts in Mathematics, Vol. 152, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K.S. Semigroups, Rings, and Markov Chains. Journal of Theoretical Probability 13, 871–938 (2000). https://doi.org/10.1023/A:1007822931408

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007822931408

Navigation