Skip to main content
Log in

Future Climatic Changes: Are We Entering an Exceptionally Long Interglacial?

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Various experiments have been conducted using the Louvain-la-Neuve two-dimensional Northern Hemisphere climate model (LLN 2-D NH) to simulate climate for the next 130 kyr into the future. Simulations start with values representing the present-day Northern Hemisphere ice sheet, using different scenarios for future CO2 concentrations. The sensitivity of the model to the initial size of the Greenland ice sheet, and to possible impacts of human activities, has also been tested. Most of the natural scenarios indicate that: (i) the climate is likely to experience a long lasting (∼50 kyr) interglacial; (ii) the next glacial maximum is expected to be most intense at around 100 kyr after present (AP), with a likely interstadial at∼60 kyr AP; and (iii) after 100 kyr AP continental ice rapidly melts, leading to an ice volume minimum 20 kyr later. However, the amplitude and, to a lesser extent, the timing of future climatic changes depend on the CO2 scenario and on the initial conditions related to the assumed present-day ice volume. According to our modelling experiments, man's activities over the next centuries may significantly affect the ice-sheet's behaviour for approximately the next 50 kyr. Finally, the existence of thresholds in CO2 and insolation, earlier shown to be significant for the past, is confirmed to be also important for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adem, J.: 1996, ‘On the Seasonal Effect of Orbital Variations on the Climates of the Next 4000 Years’, Annales Geophysicae 14, 1198-1206.

    Article  Google Scholar 

  • Alley, R. B. et al.: 1996, ‘Changes in Sea Level’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995. The Science of Climate Change, Cambridge University Press, Cambridge, U.K., pp. 359-406.

    Google Scholar 

  • Barnola, J. M., Raynaud, D., Korotkevitch, Y. S., and Lorius, Cl.: 1987, ‘Vostok Ice Core: A 160,000 Year Record of Atmospheric CO2’, Nature 329 (6138), 408-414.

    Article  CAS  Google Scholar 

  • Berger, A.: 1978, ‘Long-Term Variations of Daily Insolation and Quaternary Climatic Changes’, J. Atmos. Sci. 35, 2362-2367.

    Article  Google Scholar 

  • Berger, A.: 1995, ‘Modelling the Response of the Climate System to Astronomical Forcing’, in Henderson-Sellers, A. (ed.), Future Climates of the World, A Modelling Perspective, Vol. 16, World Survey of Climatology (Landsberg, H. E., ed.), Elsevier, Amsterdam, pp. 21-69.

    Chapter  Google Scholar 

  • Berger, A. and Loutre, M. F.: 1991, ‘Insolation Values for the Climate of the Last 10 Million Years’, Quat. Sci. Rev. 10, 297-317.

    Article  Google Scholar 

  • Berger, A. and Loutre, M. F.: 1996, ‘Modelling the Climate Response to Astronomical and CO2 Forcings’, C. R. Acad. Sci. Paris t.323 (serie IIa), 1-16.

    Google Scholar 

  • Berger, A. and Loutre, M. F.: 1997, ‘Long-Term Variations in Insolation and their Effects on Climate, the LLN Experiment’, Surveys Geophys. 18, 147-161.

    Article  Google Scholar 

  • Berger, A. and Loutre, M. F.: 1998, ‘Climate Model in an Astronomical Perspective’, in The Proceedings of the Oslo International Seminar 'Do We Understand Global Climate Change?’, Norwegian Academy of Technological Sciences, Trondheim, pp. 149-183.

    Google Scholar 

  • Berger, A., Gallée, H., Fichefet, Th., Marsiat, I., and Tricot, C.: 1990a, ‘Testing the Astronomical Theory with a Coupled Climate-Ice Sheet Model’, in Labeyrie, L. D. and Jeandel, C. (eds.), Geochemical Variability in the Oceans, Ice and Sediments, pp. 125-141.

  • Berger, A., Fichefet, Th., Gallée, H., Marsiat, I., Tricot, Ch., and van Ypersele, J. P.: 1990b, ‘Physical Interactions within a Coupled Climate Model over the Last Glacial-Interglacial Cycle’, Trans. Roy. Soc. Edinburgh: Earth Sciences 81, 357-369.

    Article  Google Scholar 

  • Berger, A., Fichefet, Th., Gallée, H., Marsiat, I., Tricot, Ch., and van Ypersele, J. P.: 1990c, ‘Ice Sheets and Sea Level Changes as a Response to Climatic Change at the Astronomical Time Scale’, in Paepe, R., Fairbridge, R. W., and Jelgersma, S. (eds.), Greenhouse Effect, Sea Level and Drought, Kluwer Academic Publishers, Dordrecht, pp. 85-107.

    Chapter  Google Scholar 

  • Berger, A., Gallée, H., and Mélice, J. L.: 1991, ‘The Earth's Future Climate at the Astronomical Time Scale’, in Goodess, C. and Palutikof, J. (eds.), Future Climate Change and Radioactive Waste Disposal, NIREX Safety Series NSS/R257, pp. 148-165.

  • Berger, A., Fichefet, Th., Gallée, H., Tricot, Ch., and van Ypersele, J. P.: 1992, ‘Entering the Glaciation with a 2-D Coupled Climate Model’, Quat. Sci. Rev. 11, 481-493.

    Article  Google Scholar 

  • Berger, A., Tricot, C., Gallée, H., and Loutre, M. F.: 1993a, ‘Water Vapour, CO2 and Insolation over the Last Glacial-Interglacial Cycles’, Phil. Trans. R. Soc. London B341, 253-261.

    Google Scholar 

  • Berger, A., Gallée, H., and Tricot, Ch.: 1993b, ‘Glaciation and Deglaciation Mechanisms in a Coupled 2-D Climate-Ice Sheet Model’, J. Glaciol. 39 (131), 45-49.

    Article  Google Scholar 

  • Berger, A., Li, X. S., and Loutre, M. F.: 1995, ‘Loess, Deep-Sea Sediment, Ice Sheet Volume and Insolation over the Last 500 ka’, in Alfred-Wegener-Stiftung (ed.), Terra Nostra, Schriften der Alfred-Wegener-Stiftung 2/95, Boon, p. 161.

    Google Scholar 

  • Berger, A., Loutre, M. F., and Gallée, H.: 1998a, ‘Sensitivity of the LLN Climate Model to the Astronomical and CO2 Forcing over the Last 200 Kyr’, Clim. Dyn. 14, 615-629.

    Article  Google Scholar 

  • Berger, A., Li, X. S., and Loutre, M. F.: 1998b, ‘Modelling Northern Hemisphere Ice Volume over the Last 3 Ma’, Quat. Sci. Rev. 18, 1-11.

    Article  Google Scholar 

  • Bond, G. C. and Lotti. R.: 1995, ‘Iceberg Discharge into the North-Atlantic on Millennial Time Scales during the Last Glaciation’, Science 267 (5200), 1005-1010.

    Article  CAS  Google Scholar 

  • Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: 1993, ‘Correlation between Climate Records from North-Atlantic Sediments and Greenland Ice’, Nature 365 (6442), 143-147.

    Article  Google Scholar 

  • Broecker, W.: 1987, ‘Unpleasant Surprises in the Greenhouse?’, Nature 328, 123.

    Article  CAS  Google Scholar 

  • Broecker, W.: 1997, ‘Thermohaline Circulation, the Achilles Heel of our Climate System:Will Man-Made CO2 Upset the Current Balance?’, Science 278, 1582-1588.

    Article  CAS  Google Scholar 

  • Broecker, W.: 1998, ‘The End of the Present Interglacial: How and When?’, Quat. Sci. Rev. 17, 689-694.

    Google Scholar 

  • Chapman, M. R. and Shackleton, N. J.: 1998, ‘Millennial-Scale Fluctuations in North-Atlantic Heat Flux during the Last 150,000 Years’, Earth Planet. Sci. Lett. 159, 57-70.

    Article  CAS  Google Scholar 

  • Crowley, T. J.: 1990, ‘Are There Any Satisfactory Geologic Analogs for a Future Greenhouse Warming?’, J. Climate 3, 1282-1292.

    Article  Google Scholar 

  • Crowley, T. J. and Baum, S. K.: 1995, ‘Is the Greenland Ice-Sheet Bistable?’, Paleoceanography 10, 357-363.

    Article  Google Scholar 

  • Cubash, U., Hasselmann, K., Höck, H., Maier-Reimer, E., Mikolajewicz, U., Santer, B. D., and Sausen, R.: 1992, ‘Time-Dependent Greenhouse Warming Computations with a Coupled Ocean-Atmosphere Model’, Clim. Dyn. 9, 55-69.

    Article  Google Scholar 

  • Elliot, M., Labeyrie, L., Bond, G., Cortijo, E., Turon, J.-L., Tisnerat, N., and Duplessy, J.-C.: 1998, ‘Millennial-Scale Iceberg Discharge in the Irminger Basin during the Last Glacial Period: Relationship with the Heinrich Events and Environmental Settings’, Paleoceanography 13, 433-446.

    Article  Google Scholar 

  • Fabré, A., Letréguilly, A., Ritz, C., and Mangeney, A.: 1995, ‘Greenland under Changing Climates: Sensitivity Experiments with a Nes Three-Dimensional Ice Sheet Model’, Ann. Glaciol. 21, 1-7.

    Article  Google Scholar 

  • Gallée, H.: 1989, ‘Conséquences pour la prochaine glaciation d'une disparition éventuelle de la calotte glaciaire recouvrant le Groenland’, Scientific Report 1989/7, Institut d'Astronomie et de Géophysique G. Lemaître, Université catholique de Louvain.

  • Gallée, H., van Ypersele, J. P., Fichefet, Th., Tricot, C., and Berger, A.: 1991, ‘Simulation of the Last Glacial Cycle by a Coupled Sectorially Averaged Climate-Ice-Sheet Model. I. The Climate Model’, J. Geophys. Res. 96, 13,139-13,161.

    Article  Google Scholar 

  • Gallée, H., van Ypersele, J. P., Fichefet, Th., Marsiat, I., Tricot, C., and Berger, A.: 1992, ‘Simulation of the Last Glacial Cycle by a Coupled, Sectorially Averaged Climate-Ice-Sheet Model. II. Response to Insolation and CO2 Variation’, J. Geophys. Res. 97 (D14), 15,713-15,740.

    Article  Google Scholar 

  • Goodess, C. M. and Palutikof, J. P. (eds.): 1991, ‘Future Climate Change and Radioactive Waste Disposal’, in Proceedings of International Workshop, Climatic Research Unit, University of East Anglia, Norwich, U.K., p. 261.

  • Goodess, C. M., Palutikof, J. P., and Davie, T. D.: 1992, The Nature and Causes of Climatic Change Assessing the Long-Term Future, Lewis Publishers, Ann Arbor, p. 248.

    Google Scholar 

  • Greve, R.: 1997, ‘Application of a Polythermal Three-Dimensional Ice-Sheet Model to the Greenland Ice-Sheet: Response to a Steady-State and Transient Climate Scenarios’, J. Climate 10, 901-918.

    Article  Google Scholar 

  • Hasselmann, K.: 1997, ‘Climate-Change Research after Kyoto’, Nature 390, 225-226.

    Article  CAS  Google Scholar 

  • Hasselmann, K., Bengtsson, L., Cubash, U., Hergel, G. C., Rodhe, H., Roecker, E., von Storch, H., Voss, R., and Waskewitz, J.: 1995, ‘Detection of Anthropogenic Climate Change Using a Finger Print Method’, Max-Planck Institute for Meteorology, Report Nr. 168, Hamburg, p. 20.

    Google Scholar 

  • Hasselmann, K., Hasselmann, S., Giering, R., Ocana, V., and von Storch, H.: 1997, ‘Sensitivity Study of Optimal CO2 Emission Paths Using a Simplified Structural Integrated Assessment Model (SIAM)’, Clim. Change 37, 345-386.

    Article  CAS  Google Scholar 

  • Hays, J. D., Imbrie, J., and Shackleton, N. J.: 1976, ‘Variations in the Earth's Orbit: Pacemaker of the Ice Ages’, Sciences 194, 1121-1132.

    Article  CAS  Google Scholar 

  • Hewitt, A. T., McDonald, D., and Bornhold, B. D.: 1997, ‘Ice-Rafted Debris in the North Pacific and Correlation to North Atlantic Climatic Events’, Geophys. Res. Lett. 24, 3261-3264.

    Article  Google Scholar 

  • Houghton, J. T., Merra Filho, L. G., Bruce, J., Hoesung, Lee, Callander, B. A., Haites, E., Harris, N., and Maskell, K. (eds.): 1995, Climate Change 1994. Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press, Cambridge, U.K., p. 339.

    Google Scholar 

  • Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.): 1996, Climate Change 1995-The Science of Climate Change, Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., p. 572.

    Google Scholar 

  • Howard, W. R.: 1997, ‘A Warm Future in the Past’, Nature 388, 418-419.

    Article  CAS  Google Scholar 

  • Hughes, T.: 1992, ‘Abrupt Climatic Change Related to Unstable Ice Sheet Dynamics. Towards a New Paradigm’, Global Planet. Change 97, 203-234.

    Article  Google Scholar 

  • Huybrechts P., Letréguilly, A., and Reeh, N.: 1991, ‘The Greenland Ice Sheet and Greenhouse Warming’, Paleogeogr. Paleoclimatol. Paleoecol. 89, 79-92.

    Article  Google Scholar 

  • Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J.: 1984, ‘The Orbital Theory of Pleistocene Climate: Support from a Reised Chronology of the Marine ?O18 Record’, in Berger, A. L., Imbrie, J., Kuka, G., and Saltzman, B. (eds.), Milankovitch and Climate, Part I, D. Reidel Publishing, Dordrecht, pp. 269-305.

    Google Scholar 

  • Johnsen S. J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: 1995, ‘Greenland Palaeotemperatures Derived from GRIP Bore Hole Temperature and Ice Core Isotope Profiles’, Tellus 47B, 624-629.

    Article  Google Scholar 

  • Jouzel, J., Barkov, N. I., Barnola, J. M., Bender, M., Chappellaz, J., Genthon, C., Kotlyakov, V. M., Lorius, Cl., Petit, J. R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., and Yiou, P.: 1993, ‘Vostok Ice Cores: Extending the Climatic Records over the Penultimate Glacial Period’, Nature 364 (6436), 407-412.

    Article  Google Scholar 

  • Kerr, R. A.: 1998, ‘Warming's Unpleasant Surprise: Shivering in the Greenhouse?’, Sciences 181, 156-158.

    Article  Google Scholar 

  • Kim, K.-Y. and Crowley, T. J.: 1994, ‘Modeling the Climate Effect of Unrestricted Greenhouse Emissions over the Next 10,000 Years’, Geophys. Res. Lett. 21, 681-684.

    Article  CAS  Google Scholar 

  • Kukla, G. J., Matthews, R. K., and Mitchell, M. J.: 1972, ‘Present Interglacial: How and When Will it End?’, Quatern. Res. 2, 261-269.

    Google Scholar 

  • Kukla, G., MacManus, J. F., Rousseau, D. D., and Chuine, I.: 1997, ‘How Long and How StableWas the Last Interglacial?’, Quat. Sci. Rev. 16, 605-612.

    Article  Google Scholar 

  • Ledley, T. S.: 1995, ‘Summer Solstice Solar-Radiation, the 100 Kyr Ice-Age Cycle, and the Next Ice-Age’, Geophys. Res. Lett. 22, 2745-2748.

    Article  Google Scholar 

  • Li, X. S., Berger, A., Loutre, M. F., Maslin, M. A., Haug, G. H., and Tiedemann, R.: 1998a, ‘Simulating Late Pliocene Northern Hemisphere Climate with the LLN 2-D Model’, Geophys. Res. Lett. 25, 915-918.

    Article  Google Scholar 

  • Li, X. S., Berger, A., and Loutre, M. F.: 1998b, ‘CO2 and Northern Hemisphere Ice Volume Variations over the Middle and Late Quaternary’, Clim. Dyn. 14, 537-544.

    Article  Google Scholar 

  • Lorius, C., Jouzel, J., Raynaud, D., Hansen, J., and Le Treut, H.: 1990, ‘The Ice-Core Record: Climate Sensitivity and Future Greenhouse Warming’, Nature 347, 139-145.

    Article  CAS  Google Scholar 

  • Lorius, C., Jouzel, J., and Raynaud, D.: 1993, ‘Glacials-Interglacials in Vostok: Climate and Greenhouse Gases’, Global Planet. Change 7, 131-143.

    Article  Google Scholar 

  • Loutre, M. F.: 1995, ‘Greenland Ice Sheet over the Next 5000 Years’, Geophys. Res. Lett. 22, 783-786.

    Article  CAS  Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1993, ‘Century-Scale Effects of Increased Atmospheric CO2 on the Ocean-Atmosphere System’, Nature 364, 215-218.

    Article  CAS  Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1994, ‘Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide’, J. Climate 7, 5-23.

    Article  Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1999a, ‘The Rôle of Thermohaline Circulation in Climate’, Tellus 51A-B, 91-109.

    CAS  Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1999b, ‘Are Two Modes of Thermohaline Circulation Stable?’, Tellus 51A, 400-411.

    Article  Google Scholar 

  • Mikolajewicz, U. and Maier-Reimer, E.: 1994, ‘Mixed Boundary Conditions in Ocean General Circulation Models and their Influence on the Stability of the Model's Conveyor Belt’, J. Geophys. Res. 99, 22633-22644.

    Article  Google Scholar 

  • Mitchell, J. M., Jr.: 1972, ‘The Natural Breakdown of the Present Interglacial and its Possible Intervention by Human Activities’, Quatern. Res. 2, 436-445.

    Article  CAS  Google Scholar 

  • Mitchell, J. F. B.: 1990, ‘Greenhouse Warming: Is the Mid-Holocene a Good Analogue?’, J. Climate 3, 1177-1192.

    Article  Google Scholar 

  • Mitchell, J. F. B., Johns, T. C., Gregory, J. M., and Tett, S. F. B.: 1995, ‘Climate Response Ton Increasing Levels of Greenhouse Gases and Sulphate Aerosols’, Nature 376 (6540), 50-504.

    Article  Google Scholar 

  • Oerlemans, J.: 1998, ‘Simulated Future Sea-Level Rise Due To Glacier Melt Base on Regionally and Seasonally Resolved Temperature Changes’, Nature 391 (6666), 474-476.

    Article  Google Scholar 

  • Oerlemans, J. and Van der Veen, C. J.: 1984, Ice Sheets and Climate, Reidel Publishing, Dordrecht, p. 217.

    Book  Google Scholar 

  • Ohmura, A., Wild, M., and Bengtsson, L.: 1996, ‘A Possible Change in Mass Balance of Greenland and Antarctic Ice Sheets in the Coming Century’, J. Climate 9, 2124-2135.

    Article  Google Scholar 

  • Oppo, D. W., McManus, J. F., and Cullen, J. L.: 1998, ‘Abrupt Climate Events 500,000 to 340,000 Years Ago: Evidence from Subpolar North Atlantic Sediments’, Nature 279, 1335-1338.

    CAS  Google Scholar 

  • Rahmstorf, S.: 1997, ‘Risk of Sea-Change in the Atlantic’, Nature 388 (6645), 825-826.

    Article  CAS  Google Scholar 

  • Rahmstorf, S. and Ganopolski, A.: 1999, ‘Long-Term Global Warming Scenarios Computed with an Efficient Coupled Climate Model’, Clim. Change 43, 353-367.

    Article  CAS  Google Scholar 

  • Rasmussen, T. L., Van Weering, T. C. E., and Labeyrie, L.: 1997, ‘Climatic Instability, Ice Sheets and Ocean Dynamics at High Northern Latitudes during the Last Glacial Period (58-10 ka BP)’, Quat. Sci. Rev. 16, 71-80.

    Article  Google Scholar 

  • Raymo, M. E.: 1997, ‘The Timing of Major Climate Terminations’, Paleoceanography 12, 577-585.

    Article  Google Scholar 

  • Saltzman, B. and Verbitsky, M.: 1994, ‘CO2 and Glacial Cycles’, Nature 367, 419.

    Article  Google Scholar 

  • Saltzman, B., Maasch, K. A., and Verbitsky, M. Y.: 1993, ‘Possible Effects of Anthropogenically-Increased CO2 on the Dynamics of Climate: Implications for Ice Age Cycles’, Geophys. Res. Lett. 20, 1051-1054.

    Article  CAS  Google Scholar 

  • Schmittner, A. and Stocker, T. F.: 1999, ‘The Stability of the Thermohaline Circulation in Global Warming Experiments’, J. Climate 12, 1117-1133.

    Article  Google Scholar 

  • Shackleton, N. J., Le, J., Mix, A., and Hall, M. A.: 1992, ‘Carbon Isotope Records from Pacific Surface Waters and Atmospheric Carbon Dioxide’, Quat. Sci. Rev. 11, 387-400.

    Article  Google Scholar 

  • Stocker, T. F. and Wright: 1991, ‘Rapid Transitions of the Ocean's Deep Circulation Induced by Changes in Surface Water Fluxes’, Nature 351, 729-732.

    Article  Google Scholar 

  • Stocker, T. F. and Schmittner, A.: 1997, ‘Influence of CO2 Emission Rates on the Stability of the Thermohaline Circulation’, Nature 388, 862-865.

    Article  CAS  Google Scholar 

  • Thompson, S. L. and Pollard, D.: 1997, ‘Greenland and Antarctic Mass Balances for Present and Doubled Atmospheric CO2 from the GENESIS Version-2 Global Climate Model’, J. Climate 10, 871-900.

    Article  Google Scholar 

  • Van de Wal, R. S. W. and Oerlemans, J.: 1994, ‘An Energy Balance Model for the Greenland Ice Sheet’, Global Planet. Change 9, 115-131.

    Article  Google Scholar 

  • Weertman, J.: 1961, ‘Stability of Ice-Age Ice Sheets’, J. Geophys. Res. 66, 3783-3792.

    Article  Google Scholar 

  • White, J. W. C.: 1993, ‘Don't Touch that Dial’, Nature 364, 186.

    Article  Google Scholar 

  • Winograd, I. J., Landwehr, J. M., Ludwig, K. R., Coplen, T. B., and Riggs, A. C.: 1997, ‘Duration and Structure of the Past Four Interglacials’, Quatern. Res. 48, 141-154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loutre, M.F., Berger, A. Future Climatic Changes: Are We Entering an Exceptionally Long Interglacial?. Climatic Change 46, 61–90 (2000). https://doi.org/10.1023/A:1005559827189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005559827189

Keywords

Navigation