Skip to main content
Log in

Potential Role of Solar Variability as an Agent for Climate Change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Numerical experiments have been carried out with a two-dimensional sector averaged global climate model in order to assess the potential impact of solar variability on the Earth's surface temperature from 1700 to 1992. This was done by investigating the model response to the variations in solar radiation caused by the changes in the Earth's orbital elements, as well as by the changes intrinsic to the Sun. In the absence of a full physical theory able to explain the origin of the observed total solar irradiance variations, three different total solar irradiance reconstructions have been used. A total solar irradiance change due to the photospheric effects incorporated in the Willson and Hudson (1988) parameterization, and the newly reconstructed solar total irradiance variations from the solar models of Hoyt and Schatten (1993) and Lean et al. (1995). Our results indicate that while the influence of the orbital forcing on the annual and global mean surface temperature is negligible at the century time scale, the monthly mean response to this forcing can be quite different from one month to another. The modelled global warming due to the three investigated total solar irradiance reconstructions is insufficient to reproduce the observed 20th century warming. Nevertheless, our simulated surface temperature response to the changes in the Sun's radiant energy output suggests that the Gleissberg cycle (≈88 years) solar forcing should not be neglected in explaining the century-scale climate variations. Finally, spectral analysis seems to point out that the 10- to 12-year oscillations found in the recorded Northern Hemisphere temperature variations from 1700 to 1992 could be unrelated to the solar forcing. Such a result could indicate that the eleven-year period which is frequently found in climate data might be related to oscillations in the atmosphere or oceans, internal to the climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, A.: 1977, ‘Long-Term Variations of the Earth's Orbital Elements’, Celestial Mech. 15, 53–74.

    Google Scholar 

  • Berger, A.: 1978, ‘Long-Term Variations of Daily Insolation and Quaternary Climatic Changes’, J. Atmos. Sci. 35, 2362–2367.

    Google Scholar 

  • Berger, A.: 1988, ‘Milankovitch Theory and Climate’, Rev. Geophys. 26, 624–657.

    Google Scholar 

  • Bertrand, C., van Ypersele, J.-P., and Berger, A: 1999, ‘Volcanic and Solar Impacts on Climate Since 1700’, Clim. Dyn. 15, 355–367.

    Google Scholar 

  • Bradley, R. S. and Jones, P. D.: 1993, ‘“Little Ice Age” Summer Temperature Variations: Their Nature and Relevance to Recent Global Warming Trends’, Holocene 3, 367–376.

    Google Scholar 

  • Crowley, T. J. and North, G. R.: 1991, Paleoclimatology, Oxford University Press, New York, p. 339.

    Google Scholar 

  • Crowley, T. J. and Kim, K.-Y.: 1996, ‘Comparison of Proxy Records of Climate Change and Solar Forcing’, Geophys. Res. Lett. 23, 359–362.

    Google Scholar 

  • Cubasch, U., Voss, R., Hegerl, G. C., Waszkewitz, J., and Crowley, T. J.: 1997, ‘Simulation of the Influence of Solar Radiation Variations on the Global Climate with an Ocean-Atmosphere General Circulation Model’, Clim. Dyn. 13, 757–767.

    Google Scholar 

  • Dickinson, R.: 1975, ‘Solar Variability in the Lower Atmosphere’, Bull. Amer. Meteorol. Soc. 56, 1240–1248.

    Google Scholar 

  • Dunkerton, T. J. and Baldwin, M. P.: 1992, ‘Modes of Interannual Variability in the Stratosphere’, Geophys. Res. Lett. 19, 49–52.

    Google Scholar 

  • Eddy, J. A.: 1976, ‘The Maunder Minimum’, Science 192, 1189–1202.

    Google Scholar 

  • Eddy, J. A.: 1988, ‘Variability of the Present and Ancient Sun: A Test of Solar Uniformitarianism’, in Stephenson, F. R. and Wolfendale, A. (eds.), Secular Solar and Geomagnetic Variations, Kluwer Academic Publishers, Dordrecht, pp. 1–23.

    Google Scholar 

  • Eddy, J. A. and Oeschger, H.: 1993, ‘The Role of Solar Output Variations’, in Eddy, J. A. and Oeschger, H. (eds.), Global Changes in the Perspective of the Past, John Wiley and Sons Ltd, Chichester, pp. 279–294.

    Google Scholar 

  • Fouquart, Y. and Bonnel, B.: 1980, ‘Computations of Solar Heating of the Earth's Atmosphere: A New Parameterization’, Beitr. Phys. Atmosph. 53, 35–62.

    Google Scholar 

  • Friis-Christensen, E. and Lassen, K.: 1991, ‘Length of the Solar Cycle: An Indicator of Solar Activity Closely Associated with Climate’, Science 254, 698–700.

    Google Scholar 

  • Gallée, H., van Ypersele, J.-P., Fichefet, Th., Tricot, Ch., and Berger, A.: 1991, ‘Simulation of the Last Glacial Cycle by a Coupled, Sectorially Averaged Climate-Ice Sheet Model 1. The Climate Model’, J. Geophys. Res. 96, 13,139–13,163.

    Google Scholar 

  • Groveman, B. S. and Landsberg, H. E.: 1979, ‘Simulated Northern Hemisphere Temperature Departures 1579–1880’, Geophys. Res. Lett. 6, 767–769.

    Google Scholar 

  • Haigh, J. D.: 1994, ‘The Role of Stratospheric Ozone in Modulating the Solar Radiative Forcing of Climate’, Nature 370, 544–546.

    Google Scholar 

  • Haigh, J. D.: 1996, ‘The Impact of Solar Variability on Climate’, Science 272, 981–984.

    Google Scholar 

  • Hickey, J. R., Alton, B. M., Kyle, H. L., and Hoyt, D. V.: 1988, ‘Total Solar Irradiance Measurements by ERB/Nimbus 7: A Review of Nine Years’, Space Sci. Rev. 48, 321–342.

    Google Scholar 

  • Hoffert, M. I., Callegari, A. J., and Hsieh, C.-T.: 1980, ‘The Role of Deep Sea Heat Storage in the Secular Response to Climate Forcing’, J. Geophys. Res. 85, 6667–6679.

    Google Scholar 

  • Hoffert, M. I., Frei, A., and Narayanan, V. K.: 1988, ‘Application of Solar Max ACRIM Data to Analysis of Solar-Driven Climatic Variability on Earth’, Clim. Change 13, 267–285.

    Google Scholar 

  • Houghton, J. T., Meira Filho, L. G., Bruce, L., Hoesung Lee, Callander, B. A., Haites, E., Harris, N., and Maskell, K. (eds.): 1994, Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press, Cambridge, p. 339.

    Google Scholar 

  • Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.): 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, p. 572.

    Google Scholar 

  • Hoyt, D. V. and Schatten, K. H.: 1993, ‘A Discussion of Plausible Solar Irradiance Variations, 1700–1992’, J. Geophys. Res. 98, 18,895–18,906.

    Google Scholar 

  • Jones, P. D.: 1988, ‘The Influence of ENSO on Global Temperatures’, Climate Monitor 17(3), 80–89.

    Google Scholar 

  • Jones, P. D. and Briffa, K. R.: 1992, ‘Global Surface Air Temperature Variations during the Twentieth Century: Part 1, Spatial, Temporal and Seasonal Details’, The Holocene 2, 165–179.

    Google Scholar 

  • Kaufmann, R. K. and Stern, D. I.: 1997, ‘Evidence for Human Influence on Climate from Hemispheric Temperature Relations’, Nature 388, 39–44.

    Google Scholar 

  • Kelly, P. M. and Wigley, T. M. L.: 1992, ‘Solar Cycle Length, Greenhouse Forcing and Global Climate’, Nature 360, 328–330.

    Google Scholar 

  • Labitzke, K. and van Loon, H.: 1993, ‘Some Recent Studies of Probable Connections between Solar and Atmospheric Variability’, Ann. Geophys. 11, 1084–1094.

    Google Scholar 

  • Labitzke, K. and van Loon, H.: 1995, ‘Connection Between the Troposphere and Stratosphere on a Decadal Scale’, Tellus 47A, 275–286.

    Google Scholar 

  • Lean, J.: 1989, ‘Contribution of Ultraviolet Irradiance Variations to Changes in the Sun's Total Irradiance’, Science 244, 197–200.

    Google Scholar 

  • Lean, J., Skumanich, A., and White, O.: 1992, ‘Estimating the Sun's Radiative Output during the Maunder Minimum’, Geophys. Res. Lett. 19, 1591–1594.

    Google Scholar 

  • Lean, J., Beer, J., and Bradley, R.: 1995, ‘Reconstruction of Solar Irradiance Since 1600: Implications for Climate Change’, Geophys. Res. Lett. 22, 3195–3198.

    Google Scholar 

  • Morcrette, J. J.: 1984, Sur la paramétrisation du rayonnement dans les modèles de la circulation générale atmosphérique, Thèse de Doctorat d'Etat, Univ. des Sci. et Tech. de Lille, Lille, France, p. 373.

    Google Scholar 

  • Nesme-Ribes, E., Ferreira, E. N., Sadourny, R., Le Treut, H., and Li, Z. X.: 1993, ‘Solar Dynamics and its Impact on Solar Irradiance and Terrestrial Climate’, J. Geophys. Res. 98, 18923–18935.

    Google Scholar 

  • Newman, M. J. and Rood, R. T.: 1977, ‘Implications of Solar Evolution for Earth's Early Atmosphere’, Science 198, 1035–1037.

    Google Scholar 

  • Park, J., Lindberg, C. R., and Vernon, F. L. I.: 1987, ‘Multitaper Spectral Analysis of High-Frequency Seismograms’, J. Geophys. Res. 92, 12,675–12,684.

    Google Scholar 

  • Reid, G. C.: 1991, ‘Solar Irradiance Variations and Global Sea Surface Temperature Record’, J. Geophys. Res. 96, 2835–2844.

    Google Scholar 

  • Reid, G. C.: 1997, ‘Solar Forcing of Global Climate Change since the Mid-17th Century’, Clim. Change 37, 391–405.

    Google Scholar 

  • Rind, D. and Overpeck, J.: 1993, ‘Hypothesized Causes of Decade-to-Century Scale Climate Variability: Climate Model Results’, Quat. Sci. Rev. 12, 357–374.

    Google Scholar 

  • Schlesinger, M. E. and Ramankutty, N.: 1992, ‘Implications for Global Warming of Intercycle Solar Irradiance Variations’, Nature 360, 330–333.

    Google Scholar 

  • Schneider, S. H.: 1972, ‘Cloudiness as a Global Climate Feedback Mechanism: The Effects on the Radiation Balance and Surface Temperature of Variations in Cloudiness’, J. Atmos. Sci. 29, 1413–1422.

    Google Scholar 

  • Smits, I., Fichefet, Th., Tricot, Ch., and van Ypersele, J.-P.: 1993, ‘A Model Study of the Time Evolution of Climate at the Secular Time Scale’, Atmósfera 6, 255–272.

    Google Scholar 

  • Svensmark, H. and Friis-Christensen, E.: 1997, ‘Variation of Cosmic Ray Flux and Global Cloud Coverage — a Missing Link in Solar-Climate Relationships’, J. Atmos. Solar-Terr. Phys. 59, 1125–1232.

    Google Scholar 

  • Thomson, D. J.: 1982, ‘Spectrum Estimation and Harmonic Analysis’, IEEE Proc. 70, 1055–1096.

    Google Scholar 

  • Thomson, D. J.: 1990, ‘Quadratic-Inverse Spectrum Estimates: Applications to Palaeoclimatology’, Phil. Trans. Roy. Soc. A332, 539–597.

    Google Scholar 

  • van Dorland, R. and van Ulden, A.: 1998, ‘Natural and Anthropogenic Variations in the Radiative Balance’, in KNMI Symposium Report, Sun and Climate: The Influence of Variations in Solar Activity on the Earth's Climate, De Bilt, The Nederlands.

  • van Ulden, A. and van Dorland, R.: 1998, ‘Statistical Relations between Solar Activity Anthropogenic Greenhouse Effect and Global Temperatures from 1856 to 1997’, in KNMI Symposium Report, Sun and Climate: The Influence of Variations in Solar Activity on the Earth's Climate, De Bilt, The Nederlands.

  • Wigley, T. M. L. and Kelly, P. M.: 1990, ‘Holocene Climatic Change, 14C Wiggles and Variations in Solar Irradiance’, Phil. Trans. Roy. Soc. A330, 547–560.

    Google Scholar 

  • Willson, R. C. and Hudson, H. S.: 1988, ‘Solar Luminosity Variations in Solar Cycle 21’, Nature 332, 810–812.

    Google Scholar 

  • Willson, R. C. and Hudson, H. S.: 1991, ‘The Sun's Luminosity over a Complete Solar Cycle’, Nature 351, 42–44.

    Google Scholar 

  • Zielinski, G. A.: 1995, ‘Stratospheric Loading and Optical Depth Estimates of Explosive Volcanism over the Last 2100 Years Derived from the Greenland Ice Sheet Project 2 Ice Core’, J. Geophys. Res. 100, 20,937–20,955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, C., van Ypersele, JP. Potential Role of Solar Variability as an Agent for Climate Change. Climatic Change 43, 387–411 (1999). https://doi.org/10.1023/A:1005470900774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005470900774

Keywords

Navigation