Skip to main content
Log in

A Gcm Study of the Impact of Greenhouse Gas Increase on the Frequency of Occurrence of Tropical Cyclones

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

In order to make inferences on the possible future changes of tropical cyclogenesis frequency, we apply the diagnostic computation of the Yearly Genesis Parameter (YGP) proposed by Gray (1975) to the large-scale fields simulated by a GCM. The YGP is an empirical diagnostic of the frequency of Tropical Cyclones (TCs) based on six physical parameters computed from seasonal means of atmospheric and oceanic variables. In this paper, we apply the YGP diagnostic to the results of three climate simulations performed with the atmospheric General Circulation Model (GCM) of Météo-France: ARPEGE-Climat. In a control simulation of the current climate, it is shown that the model has a realistic tropical climatology and that the computed YGP reproduces the geographical distribution of the tropical cyclogenesis frequency. The YGP is then applied to two simulations corresponding to two scenarios of doubled carbon dioxide concentration. The two experiments differ by the sea surface temperatures (SSTs) used as a lower boundary condition. In both simulations the YGP gives a large increase of total cyclogenesis frequency, but without extension of the area of possible cyclone genesis. The increase in YGP is due essentially to the contribution of the ocean thermal energy factor in the thermodynamical potential. The dynamical parameters, on the contrary, limit the cyclogenesis increase and are a major explanation of the difference between the two experiments. This is in agreement with the results of the previous similar study of Ryan et al. (1992) concerning the importance of large-scale atmospheric circulation modifications on tropical cyclone climatology. After discussing the observed relationships between ocean surface temperature and large-scale convection, and questioning the use of a fixed temperature threshold in the diagnosis of tropical cyclone frequency, we propose a modification to the YGP consisting in replacing the thermodynamical potential by a term proportional to the convective precipitation computed by the GCM. For the simulation of the present climate this modification affects only marginally the geographical distribution of tropical cyclone genesis, but for the doubled CO2 case, the modified YGP diagnoses a more limited increase in TC genesis in the Northern Hemisphere and a small reduction in the Southern Hemisphere, which seems in better agreement with other recent modelling studies with high resolution climate models (Bengtsson et al., 1996). We conclude that the modified YGP based on convective precipitation could serve as a useful diagnostic of tropical cyclone genesis, and should be tested in simulations with other GCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A.: 1982, ‘Tropical Cyclones: Their Evolution, Structure and Effects’, Meteorol. Monogr. 19(41), 208.

    Google Scholar 

  • Bengtsson, L., Böttger, H., and Kanamitsu, M.: 1982, ‘Simulation of HurricaneType Vortices in a General Circulation Model’, Tellus 34, 440-457.

    Google Scholar 

  • Bengtsson, L., Botzet, M., and Esch, M.: 1995, ‘Hurricane-Type Vortices in a General Circulation Model’, Tellus 47, 175-196.

    Google Scholar 

  • Bengtsson, L., Botzet, M., and Esch, M.: 1996, ‘Will Greenhouse Gas-Induced Warming over theNext 50 Years Lead to Higher Frequency and Greater Intensity of Hurricanes?’, Tellus 48A, 57-73.

    Google Scholar 

  • Bergeron, T.: 1954, ‘The Problem of Tropical Hurricanes’, Quart. J. Roy. Meteor. Soc. 80(344), 131-164.

    Google Scholar 

  • Bhat, G. S., Srinivasan, J., and Gadgil, S.: 1996, ‘Tropical Deep Convection, Convective Available Potential Energy and Sea Surface Temperature’, J. Meteor. Soc. Japan 74, 155-166.

    Google Scholar 

  • Bougeault, P.: 1985, ‘A Simple Parameterization of the Large-Scale Effects of Cumulus Convection’, Mon. Wea. Rev. 113, 2108-2121.

    Google Scholar 

  • Broccoli, A. J. and Manabe, S.: 1990, ‘Can Existing Climate Models be Used to Study Anthropogenic Changes in Tropical Cyclone Climate?’, Geophys. Res. Lett. 17, 1917-1920.

    Google Scholar 

  • Bruce, James P., Lee, Hoesung, and Haites, Erik F. (eds.): 1996, Climate Change 1995 - Economic and Social Dimensions of Climate Change, Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, p. 448.

    Google Scholar 

  • Cariolle, D., Amodei, M., Déqué, M., Mahfouf, J.-F., Simon, P., and Teyssèdre, H.: 1993, ‘A Quasi-Biennal Oscillation Signal in General Circulation Model Simulations’, Science 261, 1313-1316.

    Google Scholar 

  • Courtier, P. and Geleyn, J. F.: 1988, ‘A Global Numerical Weather Prediction Model with Variable Resolution: Application to Shallow-Water Equations’, Quart. J. Roy. Meteor. Soc. 114B(483), 1321-1346.

    Google Scholar 

  • Courtier, Ph., Freydier, C., Geleyn, J.-F., Rabier, F., and Rochas, M.: 1991, ‘The ARPEGE Project at Météo-France’, in Workshop on Numerical Methods in AtmosphericModels, Volume II, ECMWF, Reading, pp. 193-231.

    Google Scholar 

  • Cubasch, U., Hasselmann, K., Höck, H., Maier-Reimer, E., Mikolajewicz, U., Santer, B. D., and Sausen, R.: 1992, ‘Time-Dependent Greenhouse Warming Computations with a Coupled Ocean-Atmosphere Model’, Clim. Dyn. 8, 55-69.

    Google Scholar 

  • Déqué, M., Dreveton, C., Braun, A., and Cariolle, D.: 1994, ‘The ARPEGE/IFS Atmospheric Model: A Contribution to the French Community Climate Modelling’, Clim. Dyn. 10, 249-266.

    Google Scholar 

  • Emanuel, K. A.: 1986, ‘An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady State Maintenance’, J. Atmos. Sci. 43, 585-604.

    Google Scholar 

  • Emanuel, K. A.: 1987, ‘The Dependence of Hurricane Intensity on Climate’, Nature 326, 483-486.

    Google Scholar 

  • Emanuel, K. A.: 1988, ‘The Maximum Intensity of Hurricanes’, J. Atmos. Sci. 45, 1143-1155.

    Google Scholar 

  • Emanuel, K. A.: 1995, ‘Comments on “Global Climate Change and Tropical Cyclones”: Part I’, Bull. Amer. Meteorol. Soc. 76, 2241-2243.

    Google Scholar 

  • Evans, J. L.: 1992, ‘Comment on “Can Existing Climate Models Be Used to Study Anthropogenic Changes in Tropical Cyclone Climate”’, Geophys. Res. Lett. 19, 1523-5240.

    Google Scholar 

  • Gates, W. L.: 1992, ‘AMIP: The Atmospheric Model Intercomparison Project’, Bull. Amer. Meteorol. Soc. 73, 1962-1970.

    Google Scholar 

  • Geleyn, J.-F.:1987, ‘Use of a Modified Richarson Number for Parameterizing the Effect of Shallow Convection’, J. Meteor. Soc. Japan, Special NWP Symposium Volume, 141-149.

    Google Scholar 

  • Geleyn, J.-F., Bazile, E., Bougeault, P., Déqué, M., Ivanovici, V., Joly, A., Labbé, L., Piedelievre, J.-P., Piriou, J.-M., and Royer, J.-F.: 1995, ‘Atmospheric Parameterization Schemes in Meteo-France’s Arpege NWP Model’, in ECMWF Seminar on Parametrization of Sub-Grid Scale Physical Processes, 5-9 September 1994, ECMWF, Reading, pp. 385-402.

    Google Scholar 

  • Graham, N. E. and Barnett, T. P.: 1987, ‘Sea Surface Temperature, Surface Wind Divergence, and Convection over Tropical Oceans’, Science 238, 657-659.

    Google Scholar 

  • Gray, W. M.: 1968, ‘Global View on the Origin of Tropical Disturbances and Storms’, Mon. Wea. Rev. 96, 669-700.

    Google Scholar 

  • Gray, W.M.: 1975, Tropical Cyclone Genesis, Dept. of Atmospheric Science Paper, No. 234, Colorado State University, Fort Collins, CO, p. 121.

    Google Scholar 

  • Gray, W. M.: 1979, ‘Hurricanes: Their Formation, Structure and Likely Role in the Tropical Circulation’, in Shaw, D. B. (ed.), Meteorology over the Tropical Oceans, Royal Meteorological Society, J. Glaisher House, Grenville Place, Bracknell, Berks., pp. 155-218.

    Google Scholar 

  • Gray, W. M.: 1993, Seasonal Forecasting, WMO, TCP Rep. TCP31, pp. 5.1-5.21.

  • Haarsma, R. J., Mitchell, J. F. B., and Senior, C. A.: 1993, ‘Tropical Disturbances in a GCM’, Clim. Dyn. 8, 247-257.

    Google Scholar 

  • Hall, N. M. J., Hoskins, B. J., Valdes, P. J., and Senior, C. A.: 1994, ‘Storm Tracks in a High-Resolution GCM with Doubled Carbon Dioxide’, Quart. J. Roy. Meteor. Soc. 120(519), 1209-1230.

    Google Scholar 

  • Hardiker, V.: 1997, ‘A Global Numerical Weather Prediction Model with Variable Resolution’, Mon. Wea. Rev. 125, 59-73.

    Google Scholar 

  • Houghton, J. T., Callander, B. A., and Varney, S. K.: 1992, Climate Change 1992, the Supplementary Report to the IPCC Scientific Assessment, Intergovernmental Panel on Climate Change IPCC, Cambridge University Press, Cambridge, p. 216.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. J., and Ephraums, J. J.: 1990, Climate Change, the IPCC Scientific Assessment, Intergovernmental Panel on Climate Change IPCC, Cambridge University Press, Cambridge, p. 416.

    Google Scholar 

  • Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.): 1996, Climate Change 1995 - The Science of Climate Change, Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, p. 572.

    Google Scholar 

  • Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G. A., Mitchell, J. F. B., Stouffer, R. J., Tokioka, T., Weaver, A. J., and Wigley, T. M. L.: 1996, ‘Climate Models - Projections of Future Climate’, in Climate Change 1995 - The Science of Climate Change, Cambridge University Press, Cambridge, pp. 285-358.

    Google Scholar 

  • Krishnamurti, T. N., Bhowmik, S. K. R., Oosterhof, D., Rohaly, G., and Surgi, N.: 1995, ‘Mesoscale Signatures within the Tropics Generated by Physical Initialization’, Mon. Wea. Rev. 123, 2771- 2790.

    Google Scholar 

  • Krishnamurti, T. N., Oosterhof, D., and Dignon, N.: 1989, ‘Hurricane Prediction with a High Resolution Global Model’, Mon. Wea. Rev. 117, 631-669.

    Google Scholar 

  • Legates, D. R. and Willmott, C. J.: 1990b, ‘Mean Seasonal and SpatialVariability in Gauge-Corrected Global Precipitation’, Int. J. Clim. 10, 111-127.

    Google Scholar 

  • Levitus, S.: 1982, ‘Climatological Atlas of the World Ocean’, NOAA Prof. Paper, 13, NOAA, p. 174.

  • Lighthill, J., Holland, G., Gray, W., Landsea, C., Craig, G., Evans, J., Kurihara, Y., and Guard, C.: 1994, ‘Global Climate Change and Tropical Cyclones’, Bull. Amer.Meteorol. Soc. 75, 2147-2157.

    Google Scholar 

  • Louis, J.-F., Tiedtke, M., and Geleyn, J.-F.: 1981, ‘A Short History of the Operational PBL Parameterization at ECMWF’, in Workshop on Planetary Boundary Layer Parameterization, 25-27 November 1981, ECMWF, Reading, pp. 59-80.

    Google Scholar 

  • Manabe, S., Holloway, J. L. Jr., and Stone, H. M.: 1970, ‘Tropical Circulation in a Time-Integration of a Global Model of the Atmosphere’, J. Atmos. Sci. 27, 580-613.

    Google Scholar 

  • Mayfield, M. and Lawrence, M.: 1996, ‘Atlantic Hurricanes’, Weatherwise 49, 34-41.

    Google Scholar 

  • McBride, J. L. and Zehr, R.: 1981, ‘Observational Analyses of Tropical Cyclone Formation. II. Comparison of Non-Developing versus Developing Systems’, J. Atmos. Sci. 38, 1132-1151.

    Google Scholar 

  • Murphy, J. M.: 1995, ‘Transient Response of the Hadley Centre Coupled Ocean Atmosphere Model to Increase in Carbon Dioxide. Part I: Control Climate and Flux Adjustement’, J. Clim. 8, 36-56.

    Google Scholar 

  • National Climatic Data Centre (ed.): 1994, Global Tropical and Extratropical Cyclone Climatic Data (GTECCA), (CDROM), Clim. Serv. Div., NOAA, Asheville, NC.

    Google Scholar 

  • Neumann, C. J.: 1993, ‘Global Overview’, in Holland, G. J. (ed.), Global Guide to Tropical Cyclone Forecasting, WMO Technical Document 560, Geneva, pp. 1.4-1.42.

  • O'Brien, S. T., Hayden, B. P., and Shugart, H. H.: 1992, ‘Global Climatic Change, Hurricanes, and a Tropical Forest’, Clim. Change 22, 175-190.

    Google Scholar 

  • Palmén, E.: 1948, ‘On the Formation and Structure of Tropical Cyclones’, Geophysica 3, 26-38.

    Google Scholar 

  • Pearce, D. W., Cline, W. R., Achanta, A. N., Fankhauser, S., Pachauri, R. K., Tol, R. S. J., and Vellinga, P.: 1996, ‘The Social Costs of Climate Change: Greenhouse Damage and the Benefits of Control’, in Climate Change 1995 - Economic and Social Dimensions of Climate Change, Cambridge University Press, Cambridge, pp. 179-224.

    Google Scholar 

  • Randel,W. J.1992, ‘Global Atmospheric Circulation Statistics 10001 mb’, Technical Report, TN366+STR, NCAR, Atmospheric Chemistry Division, p. 256.

  • Ryan, B. F., Watterson, I. G., and Evans, J. L.: 1992, ‘Tropical Cyclone Frequencies Inferred from Gray's Yearly Genesis Parameter: Validation of GCM Tropical Climate’, Geophys. Res. Lett. 19, 1831-1834.

    Google Scholar 

  • Ryan, C. J.: 1993, ‘Costs and Benefits of Tropical Cyclones, Severe Thunderstorms and Bushfires in Australia’, Clim. Change 25, 353-367.

    Google Scholar 

  • Schlesinger, M. E. and Mitchell, J. F. B.: 1987, ‘Climate Model Simulations of the Equilibrium Climatic Response to Increased Carbon Dioxyde’, Rev. Geophys. 25, 760-798.

    Google Scholar 

  • Stephenson, D. B. and Held, I. M.: 1993, ‘GCM Response of Northern Winter Stationary Waves and Storm Tracks to Increasing Amounts of Carbon Dioxide’, J. Clim. 6, 1859-1870.

    Google Scholar 

  • Timbal, B.: 1994, ‘Analyses d'expériences de modifications climatiques liées à l'augmentation desgaz àeffet de serre. Sensibilité de la réponse à la formulation du modèle et aux forÍages utilisés',Thèse d'Université, INP, Toulouse, p. 213.

    Google Scholar 

  • Timbal, B., Mahfouf, J.-F., Royer, J.-F., and Cariolle, D.: 1995, ‘Sensitivity to Prescribed Changes in Sea Surface Temperature and Sea Ice in Doubled Carbon Dioxide Experiments’, Clim. Dyn. 12, 1-20.

    Google Scholar 

  • Timbal, B., Mahfouf, J.-F., Royer, J.-F., Cubasch, U., and Murphy, J.M.: 1997, ‘Comparison between Doubled CO2 Time-Slice and Coupled Experiments’, J. Clim. 10, 1463-1469.

    Google Scholar 

  • Tsutsui, J. I. and Kasahara, A.: 1996, ‘Simulated Tropical Cyclones Using the National Center for Atmospheric Research Community Climate Model’, J. Geophys. Res. 101(D10), 15013-15032.

    Google Scholar 

  • Vitart, F., Anderson, J. L., and Stern, W. F.: 1997, ‘Simulation of Interannual Variability of Tropical Storm Frequency in an Ensemble of GCM Integrations’, J. Clim. 10, 745-760.

    Google Scholar 

  • Waliser, D. E. and Graham, N. E.: 1993, ‘Convective Cloud Systems and Warm-Pool Sea Surface Temperatures: Coupled Interactions and Self-Regulation’, J. Geophys. Res. 98, 12881-12894.

    Google Scholar 

  • Watterson, I. G., Evans, J. L., and Ryan, B. F.: 1995, ‘Seasonal and Interannual Variability of Tropical Cyclogenesis: Diagnostics from Large Scale Fields’, J. Clim. 8, 3052-3066.

    Google Scholar 

  • Wendland, W. M.: 1977, ‘Tropical Storm Frequencies Related to Sea Surface Temperatures’, J. Appl. Meteor. 16, 477-481.

    Google Scholar 

  • Wilson, N. C.: 1994, ‘Surge of Hurricanes and Floods Perturbs Insurance Industry’, J. Meteorol. U.K. 19(185), 3-9.

    Google Scholar 

  • Yanai, M.: 1964, ‘Formation of Tropical Cyclones’, Rev. Geophys. 2, 367-414.

    Google Scholar 

  • Zhang, C. D.: 1993, ‘Large-Scale Variability of Atmospheric Deep Convection in Relation to Sea Surface Temperature in the Tropics’, J. Clim. 6, 1898-1913.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royer, JF., Chauvin, F., Timbal, B. et al. A Gcm Study of the Impact of Greenhouse Gas Increase on the Frequency of Occurrence of Tropical Cyclones. Climatic Change 38, 307–343 (1998). https://doi.org/10.1023/A:1005386312622

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005386312622

Keywords

Navigation