Skip to main content
Log in

Great Lakes Hydrology Under Transposed Climates

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Historical climates, based on 43 years of daily data from areas south and southwest of the Great Lakes, were used to examine the hydrological response of the Great Lakes to warmer climates. The Great Lakes Environmental Research Laboratory used their conceptual models for simulating moisture storages in, and runoff from, the 121 watersheds draining into the Great Lakes, over-lake precipitation into each lake, and the heat storages in, and evaporation from, each lake. This transposition of actual climates incorporates natural changes in variability and timing within the existing climate; this is not true for General Circulation Model-generated corrections applied to existing historical data in many other impact studies. The transposed climates lead to higher and more variable over-land evapotranspiration and lower soil moisture and runoff with earlier runoff peaks since the snow pack is reduced up to 100%. Water temperatures increase and peak earlier. Heat resident in the deep lakes increases throughout the year. Buoyancy-driven water column turnover frequency drops and lake evaporation increases and spreads more throughout the annual cycle. The response of runoff to temperature and precipitation changes is coherent among the lakes and varies quasi-linearly over a wide range of temperature changes, some well beyond the range of current GCM predictions for doubled CO2 conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Assel, R. A., Quinn, F. H., Leshkevich, G. A., and Bolsenga, S. J.: 1983, Great Lakes Ice Atlas, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, p. 115.

    Google Scholar 

  • Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data: 1977, Coordinated Great Lakes Physical Data, U.S. Army District Engineer, Detroit, p. 33.

    Google Scholar 

  • Croley, T. E., II: 1983a, ‘Great Lakes Basins (U.S.A.-Canada) Runoff Modeling’, J. Hydrol. 64, 135-158.

    Article  Google Scholar 

  • Croley, T. E., II: 1983b, ‘Lake Ontario Basin (U.S.A.-Canada) Runoff Modeling’, J. Hydrol. 66, 101-121.

    Article  Google Scholar 

  • Croley, T. E., II: 1989, ‘Verifiable Evaporation Modeling on the Laurentian Great Lakes’, Water Resour. Res. 25(5), 781-792.

    Google Scholar 

  • Croley, T. E., II: 1990, ‘Laurentian Great Lakes Double CO2 Climate Change Hydrological Impacts’, Clim. Change 17, 27-47.

    Google Scholar 

  • Croley, T. E., II: 1992, ‘Long-Term Heat Storage in the Great Lakes’, Water Resour. Res. 28, 69-81.

    Article  Google Scholar 

  • Croley, T. E., II: 1993, ‘Probabilistic Great Lakes Hydrology Outlooks’, Water Resour. Bull. 29, 741-753.

    Google Scholar 

  • Croley, T. E., II: 1994, ‘Hydrological Impacts of Climate Change on the Laurentian Great Lakes’, in Trends in Hydrology, Vol. 1, Council of Scientific Research Integration, Research Trends, Kaithamukku, Trivandrum, India, pp. 1-25.

    Google Scholar 

  • Croley, T. E., II: 1995, ‘Laurentian Great Lakes Dynamics, Climate, and Response to Change’, in Oliver, H. R. and Oliver, S. A. (eds.), The Role of Water and the Hydrological Cycle in Global Change, Proceedings of the NATO Advanced Study Institute, NATO ASI Series 1: Global Environmental Change, Vol. 31, SpringerVerlag, Berlin, pp. 251-296.

    Google Scholar 

  • Croley, T. E., II and Assel, R. A.: 1994, ‘A One-Dimensional Ice Thermodynamics Model for the Laurentian Great Lakes’, Water Resour. Res. 30, 625-639.

    Article  Google Scholar 

  • Croley, T. E., II and Hartmann, H. C.: 1987, ‘Near-Real-Time Forecasting of Large Lake Supplies’, J. Water Resour. Plann. Manage. Div. 113, 810-823.

    Google Scholar 

  • Croley, T. E., II and Hartmann, H. C.: 1989, ‘Effects of Climate Changes on the Laurentian Great Lakes Levels’, in Smith, J. B. and Tirpak, D. A. (eds.), The Potential Effects of Global Climate Change on the United States: Appendix A - Water Resources, U.S. Environmental Protection Agency, Washington, D.C., pp. 41-434.

    Google Scholar 

  • Croley, T. E., II and Lee, D. H.: 1993, ‘Evaluation of Great Lakes Net Basin Supply Forecasts’, Water Resour. Bull. 29, 267-282.

    Google Scholar 

  • Croley, T. E., II, Quinn, F. H., Kunkel, K. E., and Changnon, S. A.: 1996, Climate Transposition Effects on the Great Lakes Hydrologic Cycle, NOAA Technical Memorandum ERL GLERL89, Great Lakes Environmental Research Laboratory, p. 100.

  • Hartmann, H. C.: 1990, ‘Climate Change Impacts on Laurentian Great Lakes Levels’, Clim. Change 17, 49-67.

    Google Scholar 

  • Kunkel, K. E., Changnon, S. A., Croley, T. E., II, and Quinn, F. H.: 1998, ‘Transposed Climates for Study of Water Supply Variability on the Laurentian Great Lakes’, Clim. Change 38, 387-404.

    Article  Google Scholar 

  • Quinn, F. H. and den Hartog, G.: 1981, ‘Evaporation Synthesis’, in Aubert, E. J. and Richards, T. L. (eds.), IFYGL - The International Field Year for the Great Lakes, National Oceanic and Atmospheric Administration, Ann Arbor, MI, pp. 221-245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croley II, T.E., Quinn, F.H., Kunkel, K.E. et al. Great Lakes Hydrology Under Transposed Climates. Climatic Change 38, 405–433 (1998). https://doi.org/10.1023/A:1005344010723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005344010723

Keywords

Navigation