Skip to main content
Log in

Tropical Forests in a Co2-Rich World

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Tropical forests resemble, besides their enormous genetic diversity, the single largest biomass carbon pool in the world. Only a ‘small’ annual increase of this pool could trap the current surplus of atmospheric CO2. The fact that this is not happening already today (after the world has seen a 27% increase in atmospheric CO2 in only 150 years) sets the boundaries of the likely trends to be expected in the future. In contrast to the possibly small overall responses of the tropical forest carbon pool, individual plant responses to CO2 enrichment will be significant. Since species and their genotypes will not respond in identical ways, selective processes will be induced which will lead to new community structures and alterations of numerous plant-plant, plant-animal and plant-microbe interactions. Examples are provided for such subtile CO2 effects, measured both in the greenhouse and in the field. From what is known currently it is concluded that in closed humid tropical forests leaf area index is unlikely to increase, mineral nutrient and water demand may (at least temporarily) become reduced, and leaf tissue quality plus associated consumer behavior will be altered. The big unknown is the behavior of tropical soils and their microflora and fauna. There is a realistic possibility that carbon turnover will be increased in tropical forests in a CO2-enriched world, which would have substantial implications for nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander, I.: 1989, ‘Mycorrhizas in Tropical Forests’, in Proctor, J. (ed.), Mineral Nutrients in Tropical Forest and Savanna Ecosystems, Blackwell Scientific Publishers, Oxford/London/Edinburgh/Boston/Melbourne, pp. 169-188.

    Google Scholar 

  • Amthor, J. S.: 1995, ‘Terrestrial Higher Plant Response to Increasing Atmospheric CO2-Concentration in Relation to the Global Carbon Cycle’, Global Change Biol. 1, 243-274.

    Google Scholar 

  • Arnone, J. A. III: 1996, ‘Predicting Responses of Tropical Plant Communities to Elevated CO2: Lessons from Experiments with Model Ecosystems’, in Körner, Ch. and Bazzaz, F. A. (eds.), Carbon Dioxide, Populations and Communities, Physiological Ecology Series, Academic Press, San Diego, pp. 101-121.

    Google Scholar 

  • Arnone, J. A. III and Körner, Ch.: 1993, ‘Influence of Elevated CO2 on Canopy Development and Red: Far Red Ratios in Two Storied Stands of Ricinus communis’, Oecologia 94, 510-515.

    Google Scholar 

  • Arnone, J. A. III and Körner, Ch.: 1995, ‘Soil and Biomass Carbon Pools in Model Communities of Tropical Plants under Elevated CO2’, Oecologia 104, 61-71.

    Google Scholar 

  • Arnone, J. A. III, Zaller, J. G., Ziegler, C., Zandt, H., and Körner, Ch.: 1995, ‘Leaf Quality and Insect Herbivory in Model Tropical Plant Communities after LongTerm Exposure to Elevated Atmospheric CO2’, Oecologia 104, 72-78.

    Google Scholar 

  • Bazzaz, F. A.: 1998, ‘Tropical Forests in a Future Climate: Changes in Biological Diversity and Impact on the Global Carbon Cycle’, Clim. Change 39(this volume).

  • Bazzaz, F. A. and McConnaughay, K. D. M.: 1992, ‘Plant-Plant Interactions in Elevated CO2 Environments’, Aust. J. Botany 40, 547-563.

    Google Scholar 

  • Bazzaz, F. A. and Fajer, E. D.: 1992, ‘Plant-Life in a CO2-Rich World’, Sci. Amer. 266, 68-74.

    Google Scholar 

  • Bazzaz, F. A., Ackerly, D. D., Woodward, F. I., and Rochefort, L.: 1992, ‘CO2 Enrichment and Dependence of Reproduction on Density in an Annual Plant and a Simulation of Its Population Dynamics’, J. Ecol. 80, 643-651.

    Google Scholar 

  • Bazzaz, F. A., Miao, S. L., and Wayne, P. M.: 1993, ‘CO2-Induced Growth Enhancements of Co-Occurring Tree Species Decline at Different Rates’, Oecologia 96, 478-482.

    Google Scholar 

  • Bouwman, A. F.: 1990, ‘Global Distribution of the Major Soils and Land Cover Types’, in Bouwman, A. F. (ed.), Soils and the Greenhouse Effect, John Wiley and Sons Ltd., Chichester, pp. 33-59.

    Google Scholar 

  • Brown, S. and Lugo, A. E.: 1982, ‘The Storage and Production of Organic Matter in Tropical Forests and Their Role in the Global Carbon Cycle’, Biotropica 14, 161-187.

    Google Scholar 

  • Brown, S. and Iverson, L. R.: 1992, ‘Biomass Estimates for Tropical Forests’, World Resour. Rev. 4, 366-384.

    Google Scholar 

  • Brown, S., Lugo, A. E., and Iverson, L. R.: 1992, ‘Processes and Lands for Sequestering Carbon in the Tropical Forest Landscape’, Water Air Soil Pollut. 64, 139-155.

    Google Scholar 

  • Coley, P. D.: 1998, ‘Possible Effects of Climate Change on Plant/Herbivore Interactions in Moist Tropical Forests’, Clim. Change 39(this volume).

  • Condit, R.: 1998, ‘Ecological Implications of Changes in Drought Patterns: Shifts in Forest Composition in Panama’, Clim. Change 39(this volume).

  • Conroy, J. P., Milham, P. J., Mazur, M., and Barlow, E.W. R.: 1990, ‘Growth, Dry Weight Partitioning and Wood Properties of Pinus radiataD. Don after 2 Years of CO2 Enrichment’, Plant Cell Environ. 13, 329-337.

    Google Scholar 

  • Cure, J. D.: 1985, ‘Carbon Dioxide Doubling Responses: A Crop Survey’, in Strain, B. R. and Cure, J. D. (eds.), Direct Effects of Increasing Carbon Dioxide on Vegetation, U.S. Dept. of Energy, Publ. ER0238, pp. 99-116.

  • Curtis, P. S., Snow, A. A., and Miller, A. S.: 1994, ‘Genotype-Specific Effects of Elevated CO2 on Fecundity inWild Radish (Raphanus raphanistrum)’, Oecologia 97, 100-105.

    Google Scholar 

  • Denslow, J. S., Schultz, J. C., Vitousek, P.M., and Strain, B. R.: 1990, ‘Growth Responses of Tropical Shrubs to Treefall Gap Environments’, Ecology 71, 165-179.

    Google Scholar 

  • Diaz, S., Grime, J. P., Harris, J., and McPherson, E.: 1993, ‘Evidence of a Feedback Mechanism Limiting Plant Response to Elevated Carbon Dioxide’, Nature 364, 616-617.

    Google Scholar 

  • Eamus, D. and Jarvis, P. G.: 1989, ‘The Direct Effects of Increase in the Global Atmospheric CO2 Concentration on Natural and Commercial Temperate Trees and Forests’, Adv. Ecol. Res. 19, 1-55.

    Google Scholar 

  • Erhardt, A.: 1992, ‘Preferences and Non-Preferences for Nectar Constituents in Ornithoptera priamus poseidon(Lepidoptera, Papilionidae)’, Oecologia 90, 581-585.

    Google Scholar 

  • Farrar, J. F. and Williams, M. L.: 1991, ‘The Effects of Increased Atmospheric Carbon Dioxide and Temperature on Carbon Partitioning, Source-Sink Relations and Respiration’, Plant Cell Environ. 14, 819-830.

    Google Scholar 

  • Folgarait, P. J. and Davidson, D.W.: 1994, ‘Antherbivore Defenses of Myrmecophytic Cecropia under Different Light Regimes’, Oikos 71, 305-320.

    Google Scholar 

  • Garbutt, K., Williams,W. E., and Bazzaz, F. A.: 1990, ‘Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth’, Ecology 71, 1185-1194.

    Google Scholar 

  • Gifford, R.M.: 1992, ‘Interaction of Carbon Dioxide with Growth-Limiting Environmental Factors in Vegetation Productivity: Implications for the Global Carbon Cycle’, Adv. Bioclimatol. 1, 24-58.

    Google Scholar 

  • Grace, J., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P., Miranda, H. S., Nobre, C., Moncrieff, J., Massheder, J., Malhi, Y., Wright, I., and Gash, J.: 1995, ‘Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia, 1992 to 1993’, Science 270, 778-780.

    Google Scholar 

  • Grubb, P. J.: 1989, ‘The Role of Mineral Nutrients in the Tropics: A Plant Ecologist’s View’, in Proctor, J. (ed.), Mineral Nutrients in Tropical Forest and Savanna Ecosystems, Blackwell Scientific Publishers, Oxford/London/Edinburgh/Boston/Melbourne, pp. 417-439.

    Google Scholar 

  • Hättenschwiler, S. and Körner, Ch.: 1996a, ‘Effects of Elevated CO2 and Increased Nitrogen Deposition on Photosynthesis and Growth of Understorey Plants in SpruceModel Ecosystems’, Oecologia 106, 172-180.

    Google Scholar 

  • Hättenschwiler, S. and Körner, Ch.: 1996b, ‘System-Level Adjustments to Elevated CO2 in Model Spruce Ecosystems’, Global Change Biol. 2, 377-387.

    Google Scholar 

  • Hogan, K. P., Smith, A. P., and Ziska, L. H.: 1991, ‘Potential Effects of Elevated CO2 and Changes in Temperature on Tropical Plants’, Plant Cell Environ. 14, 763-778.

    Google Scholar 

  • Houghton, R. A.: 1990, ‘The Future Role of Tropical Forests in Affecting the Carbon Dioxide Concentration of the Atmosphere’, Ambio 19, 204-209.

    Google Scholar 

  • Houghton, R. A., Hobbie, J. E., Melillo, J.M., Moore, B., Peterson, B. J., Shaver, G. R., and Woodwell, G. M.: 1983, ‘Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO2 to the Atmosphere’, Ecol. Monogr. 53, 235-262.

    Google Scholar 

  • Idso, S. B. and Kimball, B. A.: 1992, ‘Effects of Atmospheric CO2 Enrichment on Photosynthesis, Respiration, and Growth of Sour Orange Trees’, Plant Physiol. 99, 341-343.

    Google Scholar 

  • Jackson, R. B., Sala, O. E., Field, C. B., and Mooney, H. A.: 1994, ‘CO2 Alters Water Use, Carbon Gain, and Yield for the Dominant Species in a Natural Grassland’, Oecologia 98, 257-262.

    Google Scholar 

  • Kimball, B. A. and Idso, S. B.: 1983, ‘Increasing Atmospheric CO2: Effects on Crop Yield, Water Use and Climate’, Agric. Water Manage. 7, 55-72.

    Google Scholar 

  • Kodric Brown and Brown: 1979, ‘Competition between Distantly Related Taxa in the Coevolution of Plants and Pollinators, Amer. Zoologist 19, 1115-1127.

    Google Scholar 

  • Körner, Ch.: 1993, ‘CO2 Fertilization: The Great Uncertainty in Future Vegetation Development’, in Solomon, A. M. and Shugart, H. H. (eds.), Vegetation Dynamics and Global Change, Chapman and Hall, New York/London, pp. 53-70.

    Google Scholar 

  • Körner, Ch.: 1995a, ‘Towards a Better Experimental Basis for Upscaling Plant Responses to Elevated CO2 and Climate Warming’, Plant Cell Environ. 18, 1101-1110.

    Google Scholar 

  • Körner, Ch.: 1995b, ‘Biodiversity and CO2: Global Change is Under Way’, GAIA 4, 234-243.

    Google Scholar 

  • Körner, Ch.: 1996, ‘The Response of Complex Multispecies Systems to Elevated CO2’, in Walker, B. H. and Steffen, W. L. (eds.), Global Change and Terrestrial Ecosystems, Cambridge University Press, Cambridge, pp. 20-42.

    Google Scholar 

  • Körner, Ch. and Arnone, J. A. III: 1992, ‘Responses to Elevated Carbon Dioxide in Artificial Tropical Ecosystems’, Science 257, 1672-1675.

    Google Scholar 

  • Körner, Ch. and Bazzaz, F. A.: 1996, Carbon Dioxide, Populations and Communities, Physiological Ecology Series, Academic Press, San Diego, p. 465.

    Google Scholar 

  • Körner, Ch. and Miglietta, F.: 1994, ‘Long Term Effects of Naturally Elevated CO2 on Mediterranean Grassland and Forest Trees’, Oecologia 99, 343-351.

    Google Scholar 

  • Körner, Ch. and Würth, M.: 1996, ‘A Simple Method for Testing Leaf Responses of Tall Forest Trees to Elevated CO2’, Oecologia 107, 421-425.

    Google Scholar 

  • Körner, Ch., Bazzaz, F. A., and Field, C. B.: 1996, ‘The Significance of Biological-Variation, Organism Interactions and Life Histories in CO2 Research’, in Körner, Ch. and Bazzaz, F. A. (eds.), Carbon Dioxide, Populations and Communities, Physiological Ecology Series, Academic Press, San Diego, pp. 443-456.

    Google Scholar 

  • Körner, Ch., Pelaez-Riedl, S., and van Bel, A. J. E.: 1995, ‘CO2 Responsiveness of Plants: A Possible Link to Phloem Loading’, Plant Cell Environ. 18, 595-600.

    Google Scholar 

  • Kursar, T. A.: 1998, ‘Relating Tree Physiology to Past and Future Changes in Tropical Rainforest Tree Communities’, Clim. Change 39(this volume).

  • Lincoln, D. E., Fajer, E. D., and Johnson, R. H.: 1993, ‘Plant-Insect Herbivore Interactions in Elevated CO2 Environments’, TREE 8, 64-68.

    Google Scholar 

  • Long, S. P.: 1991, ‘Modification of theResponse of Photosynthetic Productivity to Rising Temperature by Atmospheric CO2 Concentrations: Has Its Importance Been Underestimated?’ Plant Cell Environ. 14, 729-739.

    Google Scholar 

  • Lugo, A. E.: 1992, ‘The Search for Carbon Sinks in the Tropics’, Water Air Soil Pollut. 64, 3-9.

    Google Scholar 

  • Lugo, A. E. and Wisniewski, J.: 1992, ‘Natural Sinks of CO2 Conclusions, Key Findings and Research Recommendations from the Palmas del Mar Workshop’, Water Air Soil Pollut. 64, 455-459.

    Google Scholar 

  • McGill, W. B. and Cole, C. V.: 1991, ‘Comparative Aspects of Cycling of Organic C, N, S and P through Soil Organic Matter’, Geoderma 26, 267-286.

    Google Scholar 

  • Medina, E., Sternberg, L., and Cuevas, E.: 1991, ‘Vertical Stratification of γ13C Values in Closed Natural and Plantation Forests in the Luquillo Mountains, Puerto Rico’, Oecologia 87, 369-372.

    Google Scholar 

  • Melillo, J.M., McGuire, A. D., Kicklighter, D.W., Moore, B. III, Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global Climate Change and Terrestrial Net Primary Production’, Nature 363, 234-240.

    Google Scholar 

  • Mooney, H. A., Drake, B. G., Luxmoore, R. J., Oechel, W. C., and Pitelka, L. F.: 1991, ‘Predicting Ecosystem Responses to Elevated CO2 Concentrations’, BioScience 41, 96-104.

    Google Scholar 

  • Mousseau, M. and Enoch, H. Z.: 1989, ‘Carbon Dioxide Enrichment Reduces Shoot Growth in Sweet Chestnut Seedlings (Castanea sativaMill.)’, Plant Cell Environ. 12, 927-934.

    Google Scholar 

  • Murray, M. B., Smith, R. I., Leith, I. D., Fowler, D., Lee, H. S. J., Friend, A. D., and Jarvis, P.G.: 1994, ‘Effects of Elevated CO2, Nutrition and Climatic Warming on Bud Phenology in Sitka Spruce (Picea sitchensis) and Their Impact on the Risk of Frost Damage’, Tree Physiol. 14, 691-706.

    Google Scholar 

  • Navas, M. L., Guillerm, J. L., Fabreguettes, J., and Roy, J.: 1995, ‘The Influence of Elevated CO2 on Community Structure, Biomass and Carbon Balance of Mediterranean Old-Field Microcosms’, Global Change Biol. 1, 325-335.

    Google Scholar 

  • Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., da Silva, E. D., Stone, T. A., Trumbore, S. E., and Vieira, S.: 1994, ‘The Role of Deep Roots in the Hydrological and Carbon Cycles of Amazonian Forests and Pastures’, Nature 372, 666-669.

    Google Scholar 

  • Norby, R. J. and O'Neill, E. G.: 1991, ‘Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipiferaL.)’, New Phytologist 117, 515-528.

    Google Scholar 

  • Norby, R. J., Gunderson, C. A., Wullschleger, S. D., O'Neill, E. G., and McCracken, M. K.: 1992, ‘Productivity and Compensatory Responses of Yellow-Poplar Trees in Elevated CO2’, Nature 357, 322-324.

    Google Scholar 

  • Norby, R. J., O'Neill, E. G., and Wullschleger, S. D.: 1995, ‘Belowground Responses to Atmospheric Carbon Dioxide in Forests’, in McFee, W.W. and Kelly, J.M. (eds.), Carbon Forms and Functions in Forest Soils, Soil Science Society of America, Inc., Madison, WI, pp. 397-418.

    Google Scholar 

  • Oberbauer, S. F., Strain, B. R, and Fetcher, N.: 1985, ‘Effect of CO2 Enrichment on Physiology and Growth of Seedlings of Two Tropical Tree Species’, Physiologia Plantarum 65, 352-356.

    Google Scholar 

  • Oikawa, T.: 1986, ‘Simulation of Forest Carbon Dynamics Based on a Dry-Matter Production Model. III. Effects of Increasing CO2 upon a Tropical Rainforest Ecosystem’, Botanical Magazin Tokyo 99, 419-430.

    Google Scholar 

  • Olson, J. S., Watts, J. A., and Allison, L. J.: 1983, ‘Carbon in Live Vegetation of MajorWorld Ecosystems’, Carbon Dioxide Research Division, U.S. Dept. of Energy, Washington, Publ. DOE/NBB0037.

  • Owensby, C. E., Cochran R. C., and Auen L.M.: 1996, ‘Effects of Elevated Carbon Dioxide on Forage Quality for Ruminants’, in Körner, Ch. and Bazzaz, F. A. (eds.), Carbon Dioxide, Populations and Communities, Physiological Ecology Series, Academic Press, San Diego, pp. 363-371.

    Google Scholar 

  • Owensby, C. E., Coyne, P. I., Ham, J. M., Auen, L. M., and Knapp, A. K.: 1993, ‘Biomass Production in a Tallgrass Prairie Ecosystem Exposed to Ambient and Elevated CO2’, Ecol. Applic. 3, 644-653.

    Google Scholar 

  • Phillips, O. L.: 1996, ‘Long-Term Environmental Change in Tropical Forests: Increasing Tree Turnover’, Environ. Conserv. 23, 235-248.

    Google Scholar 

  • Phillips, O. L. and Gentry, A. H.: 1994, ‘Increasing Turnover through Time in Tropical Forests’, Science 263, 954-958.

    Google Scholar 

  • Poorter, H.: 1993, ‘Interspecific Variation in the Growth Response of Plants to an Elevated Ambient CO2 Concentration’, Vegetatio 104/105, 77-97.

    Google Scholar 

  • Raich, J.W., Nadelhoffer, K. J.: 1989, ‘Belowground Carbon Allocation in Forest Ecosystems: Global Trends’, Ecology 70, 1346-1354.

    Google Scholar 

  • Reekie, E. G. and Bazzaz, F. A.: 1989, ‘Competition and Patterns of Resource Use among Seedlings of Five Tropical Trees Grown at Ambient and Elevated CO2’, Oecologia 79, 212-222.

    Google Scholar 

  • Reekie, E. G. and Bazzaz, F. A.: 1991, ‘Phenology and Growth in Four Annual Species Grown in Ambient and Elevated CO2’, Can. J. Botany 69, 2475-2481.

    Google Scholar 

  • Rusterholz, H. P. and Erhardt, A.: 1997, ‘Effects of Elevated CO2 on Flowering Phenology and Nectar Production in Important Nectar Plants for Butterflies of Calcareous Grasslands’, Oecologia, in press.

  • Schäppi, B. and Körner, Ch.: 1996, ‘Growth Responses of an Alpine Grassland to Elevated CO2’, Oecologia 105, 43-52.

    Google Scholar 

  • Sharkey, T. D., Holland, E. A., and Mooney, H. A.: 1991, Trace Gas Emissions by Plants, Academic Press, San Diego, New York, Boston, p. 365.

    Google Scholar 

  • Silver, W. L.: 1998, ‘The Potential Effects of Elevated CO2 and Climate Change on Tropical Forest Soils and Biogeochemical Cycling’, Clim. Change 39(this volume).

  • Soepadmo, E.: 1993, ‘Tropical Rain Forests as Carbon Sinks’, Chemosphere 27, 1025-1039.

    Google Scholar 

  • Strain, B. R. and Cure, J. D.: 1985, ‘Direct Effects of Increasing Carbon Dioxide on Vegetation’, U.S. Dept. of Energy, Office of Energy Research, Publ. DOE/ER0238.

  • Tanner, E. V. J., Kapos, V., Freskos, S., Healey, J. R., and Theobald, A. M.: 1990, ‘Nitrogen and Phosphorus Fertilization of Jamaican Montane Forest Trees’, J. Tropic. Ecol. 6, 231-238.

    Google Scholar 

  • Tans, P. P., Fung, I.Y., and Takahashi, T.: 1990, ‘Observational Constraints on the Global Atmospheric Carbon Dioxide Budget’, Science 247, 1431-1438.

    Google Scholar 

  • Turner, D. P., Baglio, J. V., Wones, A. G., Pross, D., Vong, R., McVeety, B. D., and Phillips, D. L.: 1991, ‘Climate Change and Isoprene Emissions from Vegetation’, Chemosphere 23, 37-56.

    Google Scholar 

  • Taylor, J. A. and Lloyd, J.: 1992, ‘Sources and Sinks of Atmospheric CO2’, Aust. J. Botany 40, 407-418.

    Google Scholar 

  • Vareschi, V.: 1980, Vegetationsökologie der Tropen, Ulmer, Stuttgart, p. 293.

    Google Scholar 

  • Vitousek, P. M.: 1984, ‘Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests’, Ecology 65, 285-298.

    Google Scholar 

  • Walker, L. R.: 1994, ‘Growth and Fertilization Responses of Hawaiian Tree Ferns’, Biotropica 26, 378-383.

    Google Scholar 

  • Whittaker, R. H. and Likens, G. E.: 1975, ‘The Biosphere and Man’, in Lieth, H. and Whittaker, R. H. (eds.), Primary Productivity of the Biosphere, Ecol. Studies 14, Springer Verlag, Berlin, pp. 305-328.

    Google Scholar 

  • Williams, W. E., Garbutt, K., Bazzaz, F. A., and Vitousek, P. M.: 1986, ‘The Response of Plants to Elevated CO2. IV. Two Deciduous-Forest Tree Communities’, Oecologia 69, 454-459.

    Google Scholar 

  • Wittwer, S. H.: 1984, ‘Carbon Dioxide Levels in the Biosphere, Effects on Plant Productivity’, CRC-Crit. Rev. Plant Sci. 2, 171-198.

    Google Scholar 

  • Wong, S. C., Kriedemann, P. E., and Farquhar, G. D.: 1992, ‘CO2 x Nitrogen Interaction on Seedling Growth of Four Species of Eucalypt’, Aust. J. Botany 40, 457-472.

    Google Scholar 

  • Woodin, S., Graham, B., Killick, A., Skiba, U., and Cresser, M.: 1992, ‘Nutrient Limitation of the Long-Term Response of Heather (Calluna vulgaris(L.) Hull) to CO2 Enrichment’, New Phytologist 122, 635-642.

    Google Scholar 

  • Woodward, F. I., Thompson, G. B., and McKee, I. F.: 1991, ‘The Effect of Elevated Concentrations of Carbon Dioxide on Individual Plants, Populations, Communities and Ecosystems’, Ann. Botany 67, 23-38.

    Google Scholar 

  • Wullschleger, S. D., Norby, R. J., and Hanson, P. J.: 1995, ‘Growth and Maintenance Respiration in Stems of Quercus albaafter Four Years of CO2 Enrichment’, Physiologia Plantarum 93, 47-54.

    Google Scholar 

  • Ziska, L.H., Hogan, K. P., Smith, A. P., and Drake, B.G.: 1991, ‘Growth and Photosynthetic Response of Nine Tropical Species with Long-Term Exposure to Elevated Carbon Dioxide’, Oecologia 86, 383-389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körner, C. Tropical Forests in a Co2-Rich World. Climatic Change 39, 297–315 (1998). https://doi.org/10.1023/A:1005325204713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005325204713

Keywords

Navigation